
Department of Defense
Defense Modeling and Simulation Office

High Level Architecture
Run-Time Infrastructure

RTI 1.3-Next Generation
Programmer’s Guide

Version 3.2

Sponsor: Defense Modeling and Simulation Office
1901 N. Beauregard Street, Suite 504
Alexandria, VA 22311
(703) 998-0660
http://www.dmso.mil

Developers: Science Applications International Corporation
Distributed Computing Technology Division
5400 Shawnee Road, Suite 110
Alexandria, VA 22312
(703) 354-2063
http://helpdesk.dctd.saic.com

Virtual Technology Corporation
5400 Shawnee Road, Suite 203
Alexandria, VA 22312
(703) 658-7050
http://www.virtc.com

Object Sciences Corporation
P.O. Box 7175
Fairfax Station, VA 22039
(703) 250-4338
http://www.objectsciences.com

Dynamic Animations Systems
6035 Burke Center Parkway
Burke, VA 22015
(703) 503-0500
http://www.d-a-s.com

http://www.dmso.mil/
http://helpdesk.dctd.saic.com/
http://www.virtc.com/
http://www.objectsciences.com/
http://www.d-a-s.com/

Errata – Programmer’s Guide (RTI 1.3NG-V3.2, 7 September 2000)

Revision 1 – 27 October 1999

Section 12.4.1, RTI Configuration Files – additional description and location information added
to the FED and RID file sub-sections.

Section 12.4.1, RTI Executables – information updated to include RtiExec, FedExec, and
Launcher table from Installation Guide.

Section 12.4.1, RTI Executables – information updated to include RtiExec and FedExec manual
operation commands.

Section 12.4.1, Downloading the RTI Software – information updated to reflect current Software
Distribution Center address.

Revision 2 – 10 December 1999

Section 12.3.5 Parameter Definition – RTI.rid parameter definitions updated to reflect current
implementation.

Section 12.4 Removed – Repeated material from Installation Guide.

Appendix B.3.3 discoverObjectInstance – description corrected to reflect proper discovery
criteria. (Third bullet deleted.)

Appendix C.1.1, AttributeHandleSet – exceptions corrected for AttributeHandleSet.

Revision 3 – 28 April 2000

Section 12.3.5 Parameter Definition – Change to actual RTI.rid file insertion to correctly reflect
the RTI-NG 1.3v3 .rid file.

Preface

HLA RTI 1.3-Next Generation

i

Preface
The RTI Programmer’s Guide presents the Run-Time Infrastructure (RTI) – a fundamental
component of the High Level Architecture (HLA). Readers of the guide are presumed to have
modeling and simulation experience and prior exposure to the Department of Defense Modeling
and Simulation Master Plan. Experienced developers should find the RTI Programmer’s Guide,
along with the companion “Hands-On Practicum” course, sufficient to begin using the RTI.
Managers and System Architects porting old simulations to RTI 1.3-NG or planning new
simulations should find this presentation helpful for identifying and assessing important issues.
The guide examines the RTI application interface in considerable detail. The RTI software
implements the HLA Interface Specification. Releases of the RTI software respond to releases of
the HLA Interface Specification. Interesting releases are shown in Table P-1.

Interface Specification RTI Software Release Comments

Version 1.0 � RTI F.0 (12/96) No longer supported

Version 1.1 (02/97) � RTI 1.0 (05/97) No longer supported

Version 1.2 (08/97) X None

Version 1.3 (02/98)

Version 1.3 (04/98)

�

�

RTI 1.3 (03/98)

RTI 1.3v2 (6/98)
RTI 1.3v3 (7/98)
RTI 1.3v4 (9/98)

RTI 1.3v5 (12/98)
RTI 1.3v6 (3/99) Partial release

Version 1.3 (04/98) � RTI 1.3-NGv1 (9/99)
RTI 1.3-NGv2 (12/99)
RTI 1.3-NGv3 (4/00)

Verified Release

Table P-1. Mapping of Releases to Specifications

An RTI 1.1 release was originally planned to correspond to Version 1.2 of the interface
specification, but the high frequency of specification and software releases and discrepancies in
the release numbering schemes proved to be complicated. The Architecture Management Group
(AMG) decided to postpone the 1.1 release of the RTI in order to implement the new 1.3
Interface Specification. A preliminary RTI 1.3 release (known as RTI 1.3 Beta) was distributed
01/98 to a small user community. The decision was made to synchronize RTI and interface
version numbering as of the 1.3 release of the HLA Interface Specification. There is no RTI 1.2
release. The RTI 1.3-Next Generation (NG) release represents a “from scratch” implementation
that builds upon the lessons learned from its predecessors. RTI 1.3-Next Generation version 1.1
is the first release on the RTI software to be fully verified against the 1.3 Interface Specification.
This RTI Programmer’s Guide covers only RTI 1.3-NG. The previous RTI 1.0 and RTI 1.3v6
Programmer’s Guides are available on the DMSO website. Complete sets of methods reference
pages for RTI 1.3-NG are provided in appendixes A through C. Service descriptions in the
reference pages clearly delineate RTI 1.3-NG availability, syntax, and semantics. An index of
these descriptions is provided at the end of this document. It references all service descriptions
found in the three appendices, in alphabetical order.

HLA RTI 1.3-Next Generation

ii

TABLE OF CONTENTS

PREFACE...I

1. INTRODUCTION TO HLA..1-1

1.1 FEDERATION RULES ...1-3
1.2 INTERFACE SPECIFICATION...1-4
1.3 OBJECT MODEL TEMPLATE (OMT)..1-4
1.4 CONCEPTUAL MODEL OF THE MISSION SPACE (CMMS)..1-5
1.5 DATA STANDARDIZATION (DS)..1-6
1.6 FURTHER READING...1-7

2. RTI SYNOPSIS ..2-1

2.1 MAJOR COMPONENTS...2-1
2.2 RTIEXEC...2-2
2.3 FEDEXEC..2-3
2.4 LIBRTI..2-3
2.5 MANAGEMENT AREAS..2-4

2.5.1. Federation Management ..2-6
2.5.2. Declaration Management...2-6
2.5.3. Object Management ...2-7
2.5.4. Ownership Management ..2-7
2.5.5. Time Management..2-8
2.5.6. Data Distribution Management ...2-9

3. THE ROLE OF TIME ...3-1

3.1 INTRODUCTION...3-1
3.2 TIME MANAGEMENT BASICS ..3-1
3.3 "REGULATING" AND "CONSTRAINED" ..3-2

3.3.1. Regulating ..3-3
3.3.2. Lookahead..3-3
3.3.3. TSO Event ..3-3
3.3.4. Constrained..3-3
3.3.5. Lower bound time stamp (LBTS)..3-3

3.4 ADVANCING TIME ..3-4
3.4.1. LBTS Constraint...3-6
3.4.2. Late Arriving Federate...3-7

3.5 "RECEIVE-ORDERED" V. "TSO" EVENTS ...3-8
3.5.1. EXAMPLE 1...3-9
3.5.2. EXAMPLE 2...3-10
3.5.3. SUMMARY ...3-10

4. FOM/SOM DEVELOPMENT ..4-1

5. FEDERATION MANAGEMENT ..5-1

5.1 INTRODUCTION...5-1
5.2 PRIMARY FUNCTIONS ...5-1

5.2.1. RTIambassador::createFederationExecution() ...5-1
5.2.2. RTIambassador::joinFederationExecution() ...5-2
5.2.3. RTIambassador::tick() ...5-2
5.2.4. RTIambassador::resignFederationExecution() ...5-2
5.2.5. RTIambassador::destroyFederationExecution()..5-3

5.3 FOODFIGHT EXAMPLE..5-3
5.4 FEDERATE SYNCHRONIZATION...5-6
5.5 SAVE/RESTORE...5-7

HLA RTI 1.3-Next Generation

iii

6. TIME MANAGEMENT ..6-1

6.1 INTRODUCTION...6-1
6.2 TOGGLING "REGULATING" AND "CONSTRAINED" STATUS ..6-1

6.2.1. Regulation Policy ...6-2
6.2.2. Constrained Policy...6-2

6.3 TIME ADVANCE REQUESTS...6-2
6.3.1. Time-Stepped Federates...6-2
6.3.2. Event-Based Federates...6-3
6.3.3. Optimistic Federates ..6-4

6.4 FOODFIGHT EXAMPLE..6-5
6.5 TIME-RELATED QUERIES..6-9
6.6 POLLING VS. ASYNCHRONOUSIO TICK() STRATEGIES ...6-10

7. DECLARATION MANAGEMENT ...7-1

7.1 INTRODUCTION...7-1
7.2 OBJECT VOCABULARY REVIEW..7-1
7.3 OBJECT HIERARCHIES...7-2
7.4 PUBLISHING AND SUBSCRIBING OBJECTS ...7-3

7.4.1. Object Publication ...7-4
7.4.2. Interaction Publication ..7-5
7.4.3. Object Subscription..7-5
7.4.4. Interaction Subscription...7-6
7.4.5. Control Signals ..7-6

7.5 OBJECT PUBLICATION AND SUBSCRIPTION ...7-7
7.6 THROTTLING PUBLICATIONS ..7-8
7.7 FOODFIGHT OBJECT DECLARATION ...7-8

7.7.1. Excerpt from Student.h...7-9
7.7.2. Dynamic Object Publication and Subscription ..7-11

7.8 PUBLISHING AND SUBSCRIBING INTERACTIONS..7-11

8. OBJECT MANAGEMENT...8-1

8.1 REGISTERING, DISCOVERING, AND DELETING OBJECT INSTANCES ..8-1
8.2 UPDATING AND REFLECTING OBJECT ATTRIBUTES ..8-2
8.3 ENCODING AND OBJECT UPDATE ...8-3
8.4 DECODING AND OBJECT REFLECTION...8-5
8.5 EXCHANGING INTERACTIONS ...8-6
8.6 ADDITIONAL OBJECT CONTROL..8-7

8.6.1. Attribute Management..8-8
8.6.2. Enable/Disable Attribute Management ..8-9

9. OWNERSHIP MANAGEMENT ..9-1

9.1 INTRODUCTION...9-1
9.1.1. Push v. Pull ..9-1
9.1.2. Privilege to Delete..9-1

9.2 OWNERSHIP PULL...9-2
9.2.1. Attribute Ownership Acquisition ..9-4
9.2.2. Attribute Ownership Release..9-4

9.3 OWNERSHIP PUSH...9-5
9.3.1. Unconditional Push..9-5
9.3.2. Negotiated Push ...9-5
9.3.3. Complex Exchanges ...9-6

9.4 SUPPORTING FUNCTIONS ..9-6
9.4.1. Cancellation ...9-6
9.4.2. Queries ...9-6

HLA RTI 1.3-Next Generation

iv

10. DATA DISTRIBUTION MANAGEMENT ...10-1

10.1 INTRODUCTION ..10-1
10.2 EXAMPLE ROUTING SPACE ..10-1

10.2.1. A Previous Example Revisited..10-1
10.2.2. A Routing Space ...10-2

10.3 DEFINING ROUTING SPACES AND REGIONS..10-3
10.3.1. Routing Spaces...10-3
10.3.2. Extents..10-4
10.3.3. Calculation of Extents ..10-4
10.3.4. Creative Dimensions ..10-5
10.3.5. Regions and Attributes ...10-6
10.3.6. Oddly Shaped Regions ...10-6
10.3.7. Thresholds..10-7
10.3.8. Default Routing Space..10-7

10.4 CREATING REGIONS... 10-7
10.5 BINDING OBJECT ATTRIBUTES TO REGIONS...10-8

10.5.1. Attribute Updates and Regions ..10-8
10.5.2. Attribute Subscriptions and Regions ..10-9
10.5.3. Requesting Updates..10-9
10.5.4. Object Ownership and Regions..10-11
10.5.5. Time and Regions...10-11

10.6 BINDING INTERACTIONS TO REGIONS ..10-11

11. MANAGEMENT OBJECT MODEL...11-1

11.1 INTRODUCTION TO THE MANAGEMENT OBJECT MODEL..11-1
11.2 INTERACTIONS...11-2

Manager ...11-2
Manager.Federate..11-2
Manager.Federate.Adjust...11-2
Manager.Federate.Adjust.ModifyAttributeState...11-2
Manager.Federate.Adjust.SetServiceReporting ...11-2
Manager.Federate.Adjust.SetExceptionLogging..11-3
Manager.Federate.Adjust.SetTiming..11-3
Manager.Federate.Report ..11-3
Manager.Federate.Report.Alert ...11-3
Manager.Federate.Report.ReportInteractionPublication ..11-3
Manager.Federate.Report.ReportInteractionsReceived...11-4
Manager.Federate.Report.ReportInteractionsSent ..11-4
Manager.Federate.Report.ReportInteractionSubscription...11-4
Manager.Federate.Report.ReportObjectInformation...11-4
Manager.Federate.Report.ReportObjectPublication ...11-5
Manager.Federate.Report.ReportObjectsOwned ...11-5
Manager.Federate.Report.ReportObjectsReflected ...11-5
Manager.Federate.Report.ReportObjectSubscription..11-6
Manager.Federate.Report.ReportObjectsUpdated...11-6
Manager.Federate.Report.ReportReflectionsReceived ..11-6
Manager.Federate.Report.ReportServiceInvocation..11-7
Manager.Federate.Report.ReportUpdatesSent ..11-7
Manager.Federate.Request ..11-8
Manager.Federate.Request.RequestInteractionsReceived ...11-8
Manager.Federate.Request.RequestInteractionsSent...11-8
Manager.Federate.Request.RequestObjectInformation ...11-8
Manager.Federate.Request.RequestObjectsOwned ...11-8
Manager.Federate.Request.RequestObjectsReflected ..11-8
Manager.Federate.Request.RequestObjectsUpdated ...11-8

HLA RTI 1.3-Next Generation

v

Manager.Federate.Request.RequestPublications...11-8
Manager.Federate.Request.RequestReflectionsReceived...11-8
Manager.Federate.Request.RequestSubscriptions ...11-9
Manager.Federate.Request.RequestUpdatesSent...11-9
Manager.Federate.Service ...11-9
Manager.Federate.Service.ChangeAttributeOrderType ..11-9
Manager.Federate.Service.ChangeAttributeTransportationType ..11-9
Manager.Federate.Service.ChangeInteractionOrderType...11-9
Manager.Federate.Service.ChangeInteractionTransportionType..11-9
Manager.Federate.Service.DeleteObjectInstance..11-10
Manager.Federate.Service.DisableAsynchronousDelivery..11-10
Manager.Federate.Service.DisableTimeConstrained ..11-10
Manager.Federate.Service.DisableTimeRegulation...11-10
Manager.Federate.Service.EnableAsynchronousDelivery...11-10
Manager.Federate.Service.EnableTimeConstrained ...11-10
Manager.Federate.Service.EnableTimeRegulation..11-10
Manager.Federate.Service.FederateRestoreComplete...11-10
Manager.Federate.Service.FederateSaveBegun ..11-11
Manager.Federate.Service.FederateSaveComplete ...11-11
Manager.Federate.Service.FlushQueueRequest ..11-11
Manager.Federate.Service.LocalDeleteObjectInstance...11-11
Manager.Federate.Service.ModifyLookahead ...11-11
Manager.Federate.Service.NextEventRequest ...11-11
Manager.Federate.Service.NextEventRequestAvailable ..11-11
Manager.Federate.Service.PublishInteractionClass..11-12
Manager.Federate.Service.PublishObjectClass...11-12
Manager.Federate.Service.ResignFederationExecution ..11-12
Manager.Federate.Service.SubscribeInteractionClass ..11-12
Manager.Federate.Service.SubscribeObjectClassAttributes..11-12
Manager.Federate.Service.SynchronizationPointAchieved ...11-12
Manager.Federate.Service.TimeAdvanceRequest ..11-13
Manager.Federate.Service.TimeAdvanceRequestAvailable...11-13
Manager.Federate.Service.UnconditionalAttributeOwnershipDivestiture ..11-13
Manager.Federate.Service.UnpublishInteractionClass ...11-13
Manager.Federate.Service.UnpublishObjectClass ..11-13
Manager.Federate.Service.UnsubscribeInteractionClass..11-13
Manager.Federate.Service.UnsubscribeObjectClass...11-13

11.3 OBJECTS ..11-13
Manager ...11-13
Manager.Federate..11-14
Manager.Federation...11-15

12. MIGRATION DOCUMENT...12-1

12.1 INTRODUCTION TO MIGRATING RTI 1.3V6 FEDERATES TO RTI 1.3-NG ..12-1
12.2 MANAGEMENT OBJECT MODEL...12-1

12.2.1. General notes ...12-1
12.2.2. Manager.Federate.Adjust.ModifyAttributeState ..12-1
12.2.3. Manager.Federate.Adjust.SetExceptionLogging..12-1
12.2.4. Manager.Federate.Report.Alert ...12-1
12.2.5. Manager.Federate.Report.ReportObjectSubscription ...12-1
12.2.6. Manager.Federate.Report.ReportServiceInvocation ...12-1
12.2.7. Manager.Federate object ...12-2

12.3 RTI INITIALIZATION DATA (EXTRACTED FROM THE RTI.RID FILE) ...12-2
12.3.1. Introduction to the RTI 1.3-NG RTI Initialization Date file...12-2
12.3.2. File Location ..12-3

HLA RTI 1.3-Next Generation

vi

12.3.3. File Format ..12-3
12.3.4. File Parameter Scoping ...12-3
12.3.5. Parameter Definition ...12-4

12.4 NOTES ON PORTING FOODFIGHT FROM RTI1.3V6 TO RTI1.3-NG ...12-24
12.4.1. Migrating FoodFight for the Hands-On Practicum to RTI 1.3-NG ...12-24
12.4.2. Differences we noted while running the new FoodFight execution ...12-25
12.4.3. Getting help..12-26

HLA RTI 1.3-Next Generation

vii

TABLE OF FIGURES

FIGURE 1-1. DOD M&S MASTER PLAN ..1-1
FIGURE 1-2. COMMON TECHNICAL FRAMEWORK ..1-2
FIGURE 1-3. HIGH LEVEL ARCHITECTURE MANDATE..1-2
FIGURE 1-4. HLA COMPONENT SUMMARY ...1-3
FIGURE 1-5. OBJECT MODEL TEMPLATE..1-4
FIGURE 1-6. OBJECT MODEL SUMMARY..1-5
FIGURE 1-7. CONCEPTUAL MODEL OF THE MISSION SPACE...1-5
FIGURE 1-8. THE CMMS PROCESS..1-6
FIGURE 1-9. DATA STANDARDIZATION PRODUCTS..1-7
FIGURE 2-1. RTI OVERVIEW..2-1
FIGURE 2-2. RTI COMPONENTS AT-A-GLANCE ...2-2
FIGURE 2-3. RTI COMPONENTS...2-2
FIGURE 2-4. RTI AND FEDERATE CODE RESPONSIBILITIES..2-3
FIGURE 2-5. FEDERATE – FEDERATION INTERPLAY...2-4
FIGURE 2-6. FEDEXEC LIFE CYCLE ...2-5
FIGURE 2-7. MANAGEMENT AREAS PARTITIONED...2-5
FIGURE 2-8. FEDERATION MANAGEMENT..2-6
FIGURE 2-9. DECLARATION MANAGEMENT...2-6
FIGURE 2-10. OBJECT MANAGEMENT..2-7
FIGURE 2-11. OWNERSHIP MANAGEMENT...2-8
FIGURE 2-12. TIME MANAGEMENT..2-8
FIGURE 2-13. DATA DISTRIBUTION MANAGEMENT...2-9
FIGURE 3-2. SIX-AXIS DIAGRAM – LATE ARRIVAL..3-5
FIGURE 3-3. LBTS FOR CONSTRAINED FEDERATES...3-7
FIGURE 3-4. LATE-ARRIVING FEDERATE...3-8
FIGURE 3-5. PER FEDERATE QUEUES...3-9
FIGURE 4-1. THE FEDERATION DEVELOPMENT AND EXECUTION PROCESS (FEDEP) MODEL4-1
FIGURE 5-1. FEDERATION MANAGEMENT LIFE CYCLE..5-1
FIGURE 5-3. FEDERATION MANAGEMENT SAVE ..5-7
FIGURE 5-4. FEDERATION MANAGEMENT RESTORE ..5-7
FIGURE 6-1. TOGGLING "REGULATING" AND "CONSTRAINED" STATUS ...6-1
FIGURE 6-2. LOGICAL TIME ADVANCEMENT FOR A TIME-STEP FEDERATE ..6-3
FIGURE 6-3. LOGICAL TIME ADVANCEMENT FOR AN EVENT-BASED FEDERATE ..6-4
FIGURE 6-4. LOGICAL TIME ADVANCEMENT FOR AN OPTIMISTIC FEDERATE ...6-5
FIGURE 7-1. CONTROL SIGNAL SCHEMA..7-1
FIGURE 7-2. CLASS HIERARCHY – VENN DIAGRAM ..7-3
FIGURE 7-3. OBJECT PUBLISHING ..7-4
FIGURE 7-4. OBJECT PUBLICATION AND SUBSCRIPTION ..7-8
FIGURE 7-5. DECLARING INTERACTIONS ...7-12
FIGURE 8-1. OBJECT MANAGEMENT METHODOLOGY..8-1
FIGURE 8-2. OBJECT MANAGEMENT UPDATES ..8-3
FIGURE 8-3. EXCHANGING INTERACTIONS...8-7
FIGURE 8-4. ADDITIONAL OBJECT CONTROL...8-8
FIGURE 8-5. SCOPE INTERACTIONS..8-10
FIGURE 9-1. SHARED UPDATE RESPONSIBILITY...9-2
FIGURE 9-2. OWNERSHIP PULL INTERACTION DIAGRAM – ORPHANED ATTRIBUTE...9-3
FIGURE 9-3. OWNERSHIP PULL INTERACTION DIAGRAM – INTRUSIVE ..9-4
FIGURE 9-4. OWNERSHIP PUSH INTERACTION DIAGRAM ...9-5
FIGURE 10-1. PUBLICATION AND SUBSCRIPTION INTERSECTIONS..10-1
FIGURE 10-2. EXAMPLE ROUTING SPACE ..10-2
FIGURE 10-3. NORMALIZATION OF A RANGE IN AN EXTENT..10-4
FIGURE 10-5. TWO-LAYER FILTERING...10-7
FIGURE 10-6. REGION METHODS ...10-8

HLA RTI 1.3-Next Generation

viii

FIGURE 10-7. DDM ATTRIBUTES (PART 1 OF 3)..10-10
FIGURE 10-8. DDM ATTRIBUTES (PART 2 OF 3)..10-10
FIGURE 10-9. DDM ATTRIBUTES (PART 3 OF 3)..10-11
FIGURE 10-10. INTERACTIONS AND DDM ...10-12

Introduction to HLA

HLA RTI 1.3-Next Ge

1. Introduction to HLA
The DoD Modeling and Simulation Master Plan identifies six objectives for Modeling and
Simulation (M&S), as shown in Figure 1-1. Objective 1 of the plan, development of a common
technical framework for M&S, will be discussed in this chapter.

Objective 1 of the
DoD M&S Master
of the Mission Sp
common technica
described in the se

DoD M&S Master Plan
 Objective 1 Objective 2 Objective 3 Objective 4 Objective 5 Objective 6

Sub-objective S

1-1 2-1
High-level Te
architecture

2-2
1-2 Oc
Conceptual
models of the 2-3
mission space At

1-3 2-4
Data Sp
standardization

Develop a
common
technical

framework for
M&S

Provide
authoritative

representations
of systems

Provide
authoritative

representations
of human
behavior

e

Share the
benefits of

M&S
Provide timely
and

authoritative
representations
of the natural
environment
neration

1-1

Figure 1-1. DoD M&S Master Plan

 Modeling and Simulation Master Plan has three
 Plan). These are (1) High-Level Architecture (HL
ace (CMMS), and (3) Data Standardization (DS

l framework components and candidate applicat
ctions that follow.

ub-objective Sub-objective Sub

 4-1 5-1
rrain k Individuals Fie

 4-2 5-2
eans Groups and VV

 organizations
 5-3

mosphere Re

 5-4
ace Co

 5-5
 Co
 cen

Signed out by USD (A&T) on 17 October 1
Establish a
M&S

infrastructure
to meet

developer and
nd-user needs
sub-objectives (Figure 1-1,
A), (2) Conceptual Models
). Figure 1-2 outlines the
ions. Each component is

-objective Sub-objective

6-1
ld systems Quantify

impact

&A 6-2
Education

positories 6-3
Dual-use

mmunications

ordination
ter

995

Introduction to HLA

HLA RTI 1.3-Next Generation

1-2

Common Technical Framework
• Components

- High Level Architecture (HLA)
- Conceptual Models of the Mission Space (CMMS)
- Data Standardization (DS)

• Candidate Applications
- Analytical Simulations
- Tactical Level Training Simulations
- Training Range Interface
- Real Weapon Systems and C4I Interface
- Test and Evaluation Range Interface
- Engineering Level (R&D, T&E) Simulations
- Manufacturing Simulations

Figure 1-2. Common Technical Framework

The High-Level Architecture (HLA) mandate, shown in Figure 1-3, establishes a common high-
level simulation architecture to facilitate the interoperability of all types of models and
simulations among themselves and with C4I systems. The HLA is designed to promote
standardization in the M&S community and to facilitate the reuse of M&S components.

High Level Architecture (HLA)

“Under the authority of [DoD Directive 5000.59, “DoD Modeling
and Simulation (M&S) Management, “January 4, 1994], and as
prescribed by [DoD 5000.59-P, “DoD Modeling and Simulation
Master Plan (MSMP),” October 1995] I designate the High Level
Architecture as the standard technical architecture for all DoD
simulations.

- Dr. Paul Kaminski – (9/10/1996)

* The Drive Toward Standardization
 - The DoD now mandates adherence to the HLA.
 - HLA replaces earlier approaches (e.g., DIS, ALSP)
 - The HLA is in the process of IEEE standardization.

Figure 1-3. High Level Architecture Mandate

Introduction to HLA

HLA RTI 1.3-Next Generation

1-3

The HLA is defined by three components: (1) Federation Rules, (2) the HLA Interface
Specification, and (3) the Object Model Template (OMT). Figure 1-4 summarizes the attributes
of the HLA components.

Figure 1-4. HLA Component Summary

The Run-Time Infrastructure (RTI) software implements the interface specification and
represents one of the most tangible products of the HLA. It provides services in a manner that is
comparable to the way a distributed operating system provides services to applications.

Within the HLA, federations are comprised of federates that exchange information in the form of
objects and interactions – concepts that will be explained further in this guide.

1.11.11.11.1 Federation Rules

The Federation Rules describe the responsibilities of federates and their relationships with the
RTI. There are ten rules. Five relate to the federation and five to the federate.

Federation Rules:

1. Federations shall have an HLA Federation Object Model (FOM), documented in
accordance with the HLA Object Model Template (OMT).

2. In a federation, all representation of objects in the FOM shall be in the federates, not in
the run-time infrastructure (RTI).

3. During a federation execution, all exchange of FOM data among federates shall occur via
the RTI.

4. During a federation execution, federates shall interact with the run-time infrastructure
(RTI) in accordance with the HLA interface specification.

HLA Components

• Federation Rules
- Ensure proper interaction of simulations in a federation.
- Describe the simulation and federate responsibilities.

• Interface Specification
- Defines Run-Time Infrastructure (RTI) services.
- Identifies “callback” functions each federate must provide.

• Object Model Template (OMT)
- Provides a common method for recording information.
- Establishes the format of key models:

1) Federation Object Model
2) Simulation Object Model
3) Management Object Model

Introduction to HLA

HLA RTI 1.3-Next Generation

1-4

5. During a federation execution, an attribute of an instance of an object shall be owned by
only one federate at any given time.

Federate Rules:

6. Federates shall have an HLA Simulation Object Model (SOM), documented in
accordance with the HLA Object Model Template (OMT).

7. Federates shall be able to update and/or reflect any attributes of objects in their SOM and
send and/or receive SOM object interactions externally, as specified in their SOM.

8. Federates shall be able to transfer and/or accept ownership of an attribute dynamically
during a federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way that will allow them to coordinate
data exchange with other members of a federation.

1.21.21.21.2 Interface Specification

The interface specification identifies how federates will interact with the federation and,
ultimately, with one another. The specification is divided into six management areas, which are
explored at length in subsequent chapters.

1.31.31.31.3 Object Model Template (OMT)

All objects and interactions managed by a federate, and visible outside the federate, are described
according to the standard OMT. (See Figure 1-5.) The OMT provides a common method for
representing HLA Object Model information.

Figure 1-5. Object Model Template

Object Model TemplateObject Model Template

• Object Model Template (OMT)
- Provides a common framework for HLA object model documentation.
- Fosters interoperability and reuse of simulations and simulation

components

• Required Information
- Object Class Structure Table
- Object Interaction Table
- Attribute/Parameter Table
- FOM/SOM Lexicon

• Optional Information (OMT Extensions)
- Component Structure Table
- Associations Table
- Object Model Metadata

Introduction to HLA

HLA RTI 1.3-Next Generation

1-5

Conceptual Model of the Mission Space (CMMS)

• Establishes a common framework for knowledge
acquisition and a standard format for expression.

• Organizes validated, relevant actions and interactions
organized by specific task and entity/organization.

• Provides simulation developers a common representation of
the real world.

• Presents actions and interactions among the various entities
associated with a particular mission area.

The Federation Object Model (FOM), Simulation Object Model (SOM) and Management Object
Model (MOM) are all defined using the OMT. Figure 1-6 summarizes these models.

Figure 1-6. Object Model Summary

The HLA separates data and architecture. It prescribes that OMT objects and interactions
defined according to the OMT can be constructed and exchanged with no adjustments to HLA-
derived software.

1.41.41.41.4 Conceptual Model of the Mission Space (CMMS)

A Conceptual Model of the Mission Space (CMMS) is a first abstraction of the real world, which
serves as a common framework for knowledge acquisition with validated, relevant actions and
interactions organized by specific task and entity/organization. It is a simulation-independent
hierarchical description of actions and interactions among the various entities associated with a
particular mission area. See Figure 1-7.

Figure 1-7. Conceptual Model of the Mission Space

Object ModelsObject Models

• Federation Object Model (FOM)
- One per federation
- Introduces all shared information (e.g., objects, interactions)
- Contemplates inter-federate issues (e.g., data encoding schemes)

• Simulation Object Model (SOM)
- One per federate.
- Describes salient characteristics of a federate
- Presents objects and interactions which can be used externally
- Focuses on the federate’s internal operation

• Management Object Model (MOM)
- Universal definition.
- Identifies objects and interactions used to manage a federation.

Introduction to HLA

HLA RTI 1.3-Next Generation

1-6

Thus, conceptual models of the mission space provide simulation developers with a common
baseline for constructing consistent and authoritative M&S representations. The primary
purpose of CMMS is to facilitate interoperability and reuse of simulation components,
particularly among DoD simulation developments, by sharing common, authoritative
information between DoD simulations. The CMMS will provide a meta-model of fundamental
knowledge about military operations. The CMMS System will capture and store this knowledge,
and make it easily accessible to simulation developers and users. Figure 1-8 depicts the CMMS
process.

Figure 1-8. The CMMS Process

The mission space structure, tools, and resources will provide both an overarching framework
and access to the necessary data and details to permit development of consistent, interoperable,
and authoritative representations of the environment, systems, and human behavior in DoD
simulation system.

1.51.51.51.5 Data Standardization (DS)

The data standardization program seeks to facilitate reuse, interoperability, and data sharing
among models, simulations, and C4I systems by establishing policies, procedures, and
methodologies for data requirements, standards, sources, security, and verification, validation,
and certification.

The primary products of the data standardization program are: (1) Common Semantics and
Syntax (CSS), which define common lexicons, dictionaries, taxonomies, and tools for data

CMMS
Data Base

Validation by
Authoritative Source

 KNOWLEDGE
 INPUT
INTERFACE

EXPORT
TOOLS

KNOWLEDGE INTEGRATION
TOOLS

 MANAGEMENT
 & REVIEW
 USER INTERFACE

INTEGRATION
USER INTERFACE

PRIMARY USER
 INTERFACES

IMPORT
TOOLS

MANAGEMENT
TOOLS

Simulation Developers,
Warfighters (Doctrine

Developers, Trainers, ...)

Verified,
authoritative
sources of
knowledge

Information
Verification/Integration

DIF

CMMS Data Base is part of the MSRR (Modeling
and Simulation Resource Repository), used in
designing FOMs (Federation Object Models)

The CMMS ProcessThe CMMS Process
Data Interchange Format

DIF

Introduction to HLA

HLA RTI 1.3-Next Generation

1-7

elements, and (2) Data Interchange Formats (DIF), the physical structures (BNF, SQL) used by
programmers to actually interchange data.

Other supporting data standardization products are: (1) Authoritative Data Sources (ADS), the
primary means for identifying data for reuse, (2) Data Quality (DQ) practices, a body of
VV&A/C guidelines, and (3) Data Security (DS) practices, the policies pertaining to data
protection and release. See Figure 1-9.

Figure 1-9. Data Standardization Products

1.61.61.61.6 Further Reading

Additional information may be obtained from the HLA Technical Library. Figure 1-10 provides
the DMSO home page location and e-mail address for connections via the Internet.

Figure 1-10. HLA Technical Library

Program Activities

CSS ADS DIF DQ DS
Common

Semantics
and Syntax

Authoritative
Data Sources

Data
Interchange

Format

Data
Quality

Data
Security

Lexicons,
dictionaries,
etc...

Means for
identifying
data for reuse

Physical
structures
(BNF, SQL)
used by
programmers

Body of
VV&A/C
guidelines

Policies for
data
protection
and release

Data Standardization ProductsData Standardization Products

HLA Technical LibraryHLA Technical Library

• The DMSO home page – http://www.dmso.mil/
- HLA Baseline Definition (Rules, Interface Specification, OMT)
- OMT Supporting Documents, Extensions and Test Procedures
- HLA Glossary
- HLA Compliance Checklist
- HLA Federation Development Process Model
- HLA Security Architecture
- And so much more ...

• E-mail Connections
- Questions for DMSO: hla@msis.dmso.mil
- Reflectors: TBD

RTI Synopsis

HLA RTI 1.3-Next Generation

2-1

2. RTI Synopsis
This chapter introduces general characteristics of RTI 1.3-NG. It identifies major RTI
components, examines the interplay between federates and the federation, and postulates some
ground rules for using RTI software. Figure 2-1 summarizes the RTI definition described in the
rest of this chapter.

Run-Time Infrastructure (RTI) Overview

What is the RTI?
Software that provides common services to simulation systems.

Implementation of the HLA Interface Specification.

An architectural foundation encouraging portability and interoperability.

RTI Services at a Glance
Separates simulation and communication.

Improves on older standards (e.g., DIS, ALSP).

Facilitates construction and destruction of federations.

Supports object declaration and management between federates.

Assists with federation time management.

Provides efficient communications to logical groups of federates.

Figure 2-1. RTI Overview

RTI 1.3-NG implements Version 1.3 (Draft 10, 2 April 1998) of the HLA Interface Specification.
The RTI 1.3-NG software having been rewritten “from the ground up”, may vary slightly from
its predecessors. However, every effort has been made to ensure that RTI 1.3-NG maintains a
“compile time” compatibility with the previous RTI 1.3v6 release.

RTI software is currently comprised of the RTI Executive process (RtiExec), the Federation
Executive process (FedExec) and the libRTI library. As illustrated in Figure 2-2, each
executable containing federates incorporates libRTI. Federates may exist as independent
processes or be grouped into one or more processes. A federate may simultaneously participate
in more than one federation.

2.12.12.12.1 Major Components

RTI software can be executed on a standalone workstation or executed over an arbitrarily
complex network. The RtiExec process manages the creation and destruction of federation
executions. Each executing federation is characterized by a single, global FedExec.

RTI Synopsis

HLA RTI 1.3-Next Generation

2-2

RTI Components At-a-GlanceRTI Components At-a-Glance

RtiExec FedExec

libRTI

Federate(s)

libRTI

Federate(s)

Inter-Process Communications

Figure 2-2. RTI Components At-a-Glance

The FedExec manages federates joining and resigning the federation. The libRTI library extends
RTI services to federate developers. Services are accomplished through encapsulated
communications between libRTI, RtiExec, and the appropriate FedExec. Figure 2-3 summarizes
the activities supported by the components of the RTI.

RTI Components

• RtiExec – The RTI Executive
Manages multiple federation executions within a
network. different names).

• FedExec – The Federation Executive

Manages multiple federates within the federation
execution.

• libRTI – The RTI Library

Provides HLA services to federates.

Figure 2-3. RTI Components

2.22.22.22.2 RtiExec

The RtiExec is a globally known process. Each application communicates with RtiExec to
initialize RTI components. The RtiExec’s primary purpose is to manage the creation and

RTI Synopsis

HLA RTI 1.3-Next Generation

2-3

destruction of FedExecs. An RtiExec directs joining federates to the appropriate federation
execution. RtiExec ensures that each FedExec has a unique name.

2.32.32.32.3 FedExec

Each FedExec manages a federation. It allows federates to join and to resign, and facilitates data
exchange between participating federates. A FedExec process is created by the first federate to
successfully invoke the “createFederationExecution” service for a given federation execution
name. Each federate joining the federation is assigned a federation wide unique handle.

2.42.42.42.4 libRTI

The C++ library, libRTI, provides the RTI services specified in the HLA Interface Specification
to federate developers. The class diagrams in Figure 2-4 illustrates RTI and federates code
responsibilities. Federates use libRTI (which communicates with the RtiExec, a FedExec, and
other federates) to invoke HLA services.

RTI and Federate “Ambassadors”RTI and Federate “Ambassadors”

"Various RTI Objects"

RTIambassador

Federate Code

"Ambassador Implementation"

"Various Federate Objects"

FederateAmbassador

Figure 2-4. RTI and Federate Code Responsibilities

The HLA Interface Specification identifies the services provided by libRTI to each federates and
the obligation each federate bears to the federation. Within libRTI, the class RTIambassador
bundles the services provided by the RTI.1 All requests made by a federate on the RTI take the
form of an RTIambassador method call. The abstract class FederateAmbassador identifies the
callback functions each federate is obliged to provide.

While both RTIambassador and FederateAmbassador ambassador classes are a part of libRTI, it
is very important to understand that FederateAmbassador is abstract. The federate must

1 Most RTI classes (e.g., RTIambassador, FederateAmbassador) are declared within the class RTI for namespace protection. The
prefix “RTI::” will be required to access these classes (e.g., RTI::RTIambassador).

RTI Synopsis

HLA RTI 1.3-Next Generation

2-4

implement the functionality declared in FederateAmbassador. An instance of this federate-
supplied class is required to join a Federation.

The federation (via libRTI) responds asynchronously to many federate requests.
FederateAmbassador “callback” functions provide a mechanism for the federation to
communicate back to the federate.

The header file “RTI.hh” that accompanies libRTI includes declarations for class
RTIambassador, the abstract class FederateAmbassador, and a variety of supporting declarations
and definitions. The RTIambassador is implemented in libRTI and must be incorporated into
each federate executable. The RTI and Federate ambassadors are examined in detail in
subsequent chapters.

2.52.52.52.5 Management Areas

Figure 2-5 presents a high level illustration of the interplay between a federate and a federation.

Figure 2-5. Federate – Federation Interplay

The HLA Interface Specification partitions the exchanges that take place between federate and
federation into six management areas of the FedExec life cycle, as shown in Figure 2-6. The
remaining figures offer a light overview of the management areas. Details will be explored in
subsequent chapters. Figure 2-7 summarizes the objectives of each of the management areas.

Interplay At-a-GlanceInterplay At-a-Glance

Federate Federation
create federation

join

create & register objects

publish object attributes & interactions

send, update & reflect

delete/remove object

exchange attribute ownership

begin shutdown

resign

remove federate

subscribe & discover

RTI Synopsis

HLA RTI 1.3-Next Generation

2-5

Each of the management areas is described in one of the chapters that follow. Figures 2-8
through 2-13 present summary graphics for each management area to introduce the purpose and
scope of each area and to provide a synopsis of the actions allocated to each management area.
The applicable chapters that relate to each of the management areas are also provided in the
following sections.

FedExec LifecycleFedExec Lifecycle

Federation Mgmt

Declaration Mgmt

Object Mgmt

Data Distribution Mgmt

Time Mgmt

Ownership Mgmt

Figure 2-6. FedExec Life Cycle

Figure 2-7. Management Areas Partitioned

Management Areas Partitioned

Management Area Activities Described
Federation Mgmt Control an exercise

Declaration Mgmt Define data publication and
subscription

Object Mgmt Exchange object and interaction
data

Ownership Mgmt Transfer attribute ownership

Time Mgmt Control message ordering
Data Distribution Mgmt Efficiently route data between

producers and consumers

RTI Support Services Assist service operations

RTI Synopsis

HLA RTI 1.3-Next Generation

2-6

2.5.1. Federation Management

Federation management includes such tasks as creating federations, joining federates to
federations, observing federation-wide synchronization points, effecting federation-wide saves
and restores, resigning federates from federations, and destroying federations. Figure 2-8
summarizes the Federation Management profile. Chapter 5, Federation Management, describes
these features.

Federation Management
• Activity Coordination

- Manages federation execution
- Initializes name space, transportation, ordering defaults, routing spaces, etc.

• Action Synopsis
- Creation “Let’s play a game.”
- Joining “I want to play.”
- Saves “Let’s save our state.”
- Sync “Hold it –let’s sync up.”
- Resigning “Now I’m leaving the game.”
- Deleting “Let’s end the game.”

Figure 2-8. Federation Management

2.5.2. Declaration Management

Declaration management includes publication, subscription, and supporting control functions.
Federates that produce object class attributes or interactions must declare exactly what they are
able to publish (i.e., generate). Figure 2-9 shows the main coordination tasks and synopsizes the
actions accomplished by declaration management. Chapter 7, Declaration Management,
discusses these tasks in detail.

Declaration ManagementDeclaration Management

• Data Exchange Coordination
- Specify data types a federate will send and receive.

- Control what data is required based on external interest.

• Action Synopsis
-

 Subscription "Here's what I want to know about.”-

Publication “Here's the information I'll be presenting.”

- Control “Hey, someone actually wants to know about that.”

Figure 2-9. Declaration Management

RTI Synopsis

HLA RTI 1.3-Next Generation

2-7

2.5.3. Object Management

Object management includes instance registration and instance updates on the object producer
side and instance discovery and reflection on the object consumer side. Object management also
includes methods associated with sending and receiving interactions, controlling instance
updates based on consumer demand, and other miscellaneous support functions. Figure 2-10
presents the object discovery principles and a synopsis of the actions effected by object
management. These actions are discussed in detail in Chapter 8, Object Management.

Object ManagementObject Management

• Object Discovery Principles
- Creates, modifies, and deletes object and interaction.
- Manages object identification.
- Facilitates object registration and distribution.
- Coordinates attribute updates among federates.
- Accommodates various transportation and time management schemes.

• Action Synopsis
- Register Object “I’ve got a new tank.”
- Update Attribute “One of my planes just changed direction.”
- Send Interaction “Flight 501 requesting permission to land.”
- Delete Object “A truck just exited view.”
- Change Transport “The fuel level must be sent reliable.”
- Change Order Type “Aircraft position must be sent in order.”

Figure 2-10. Object Management

2.5.4. Ownership Management

The RTI allows federates to distribute the responsibility for updating and deleting object
instances with a few restrictions. It is possible for an object instance to be wholly owned by a
single federate. In such cases, the owning federate has responsibility for updating all attributes
associated with the object and for deleting the object instance. It is possible for two or more
federates to share update responsibility for a single object instance. When update responsibility
for an object instance is shared, each of the participating federates has responsibility for a
mutually exclusive set of object attributes.2 Only one federate can have update responsibility for
an individual attribute of an object instance at any given time. In addition, only one federate has
the privilege to delete an object instance at any given time. These object management tasks are
summarized in Figure 2-11, and discussed in detail in Chapter 9, Ownership Management.

2 For a given object instance, some attributes may be unowned – i.e., no federate has update responsibility.

RTI Synopsis

HLA RTI 1.3-Next Generation

2-8

Ownership ManagementOwnership Management

• Shared
- Supports transfer of ownership for individual object attributes.
- Offers both “push” and “pull” based transactions.

• Action
- Divest “I cannot simulate this plane’s radar signal anymore.”
- Acquire “Thanks, I’ll accept responsibility for this tank’s position.”
- Query “Who is managing this truck’s fuel supply?”

Figure 2-11. Ownership Management

2.5.5. Time Management

The focus of time management is on the mechanics required to implement time management
policies and negotiate time advances. Chapter 6, Time Management, discusses these tasks in
detail. Figure 2-12 displays a synopsis of the time management actions.

Figure 2-12. Time Management

Time Management

• Coordinate federate logical time advancement
- Establish or associate events with federate time
- Regulate interactions, attribute updates, object reflections or object deletion by

federate time scheme
- Support causal behavior within a federation
- Support interaction among federates using different timing schemes

• Action Synopsis
- Set Policy “Send me events in increasing logical time sequence.”
- Request Time “What time is it?”
- Bracketing “I’ll provide you 20 minutes prior notice for all changes.”
- Advance Time “Move me to my current time plus 5.0 seconds.”
- Next Event “Move me up to my next TSO event and deliver it.”
- Flush Queue “Move me up to the LBTS or this limit and deliver my

queued events.”

RTI Synopsis

HLA RTI 1.3-Next Generation

2-9

2.5.6. Data Distribution Management

Data distribution management (DDM) provides a flexible and extensive mechanism for further
isolating publication and subscription interests – effectively extending the sophistication of the
RTI's routing capabilities. Figure 2-13 presents a synopsis of the DDM actions.

Data Distribution Management
• Information Routing

- Supports efficient routing of data.
- Specifies distribution.
- Acknowledges “routing” conditions.

• Action Synopsis
- Create region
- Modify region
- Delete region
- Register entity w/region
- Control updates

Figure 2-13. Data Distribution Management

The Role of Time

HLA RTI 1.3-Next Generation

3-1

3. The Role of Time
3.13.13.13.1 Introduction

This chapter introduces time management from a philosophical perspective and emphasizes RTI
terminology.3 The RTI software supports a variety of time management policies. Time
management services are optional. However, it is important to understand the time management
models available in the RTI and the implication of exchanging events between federates with
different time management policies. Chapter 6, Time Management, introduces specific RTI
methods for setting time management policy and negotiating time advances.

3.23.23.23.2 Time Management Basics

The HLA accommodates a variety of time management policies. The RTI provides an optional
time management service to coordinate the exchange of events between federates. Events can be
associated with a point in time and the RTI can assist in ensuring causal behavior. It is also
possible for one or more federates in a federation to fully ignore time. By default, the RTI does
not attempt to coordinate time between federates. In addition, the HLA not only supports a
variety of time management policies, but also facilitates interoperability between federates with
different policies. Even if the optional time management services are ignored, it pays to
understand available time management schemes.

In a federation, time always moves forward. However, the perception of the current time may
differ among participating federates. Time management is concerned with the mechanisms for
controlling the advancement of each federate along the federation time axis. In general, time
advances must be coordinated with object management services so that information is delivered
to each federate in a causally correct and ordered fashion.

In some situations, it is appropriate to constrain the progress of one federate based on the
progress of another. In fact, any federate may be designated a regulating federate. Regulating
federates regulate the progress in time of federates that are designated as constrained. In
general, a federate may be "regulating," "constrained," "regulating and constrained," or "neither
regulating nor constrained." By default, federates are neither regulating nor constrained. The
RTI recognizes every federate as adopting one of these four approaches to time management. A
federation may be comprised of federates with any combination of time management models.
That is, a federation may consist of several federates that are regulating, several federates that are
constrained, several federates that are regulating and constrained, or several federates that are not
using the RTI time management services.

A federate that becomes "time regulating" may associate some of its activities (e.g., updating
instance attribute values and sending interactions) with points on the federation time axis. Such
events are said to have a "time-stamp." A federate that is interested in discovering events in a
federation-wide, time-stamp order is said to be "time constrained." The time management

3 Portions of this chapter are lifted directly or paraphrased from the HLA 1.3 Interface Specification.

The Role of Time

HLA RTI 1.3-Next Generation

3-2

services coordinate event exchange among time regulating and time-constrained federates.4 Such
coordination levies certain rules on participants.

Again, federates are neither time regulating nor time constrained by default. The activities of
these federates are not coordinated (in time) with other federates by the RTI. Such federates
need not make use of any of the time management services. However, these federates may
participate in a federation where time-stamped events are exchanged. It is important to
understand how time-stamped events are perceived by federates that are not constrained.
Conversely, it is important to understand how events generated by a non-regulating federate are
perceived by a constrained federate.

3.33.33.33.3 "Regulating" and "Constrained"

Figure 3-1, known as the "two-axis diagram," introduces the definitions of "regulating,"
"lookahead," "TSO event," "constrained," and "lower bound time stamp (LBTS)." Subsequent
diagrams examine complex combinations of federates with various time management policies
and explore these definitions in some depth.

Regulating Federate

Constrained Federate

Lookahead

Lower Bound Time Stamp (LBTS) constraint

Time-Stamp-Ordered (TSO) Events

Figure 3-1. Two-Axis Diagram

4 Regulating federates generally produce time-stamped events, which their Local RTI Component (LRC) communicates to
interested recipients. The LRC of each interested recipient orders all arriving time-stamped events by the time at which the events
are said to occur.

The Role of Time

HLA RTI 1.3-Next Generation

3-3

3.3.1. Regulating

A federate that declares itself to be "regulating" is capable of generating time-stamp-ordered
(TSO) events. TSO events are said to occur at a specific point in time. Federates that are not
regulating can generate events, but there is no time associated with these events.5 A regulating
federate coordinates time advances with the local RTI component (LRC). The regulating
federate perceives the current time to be "tcurrent." Federates can dynamically alter their status
becoming regulating or non-regulating dynamically (i.e., "on-the-fly").

3.3.2. Lookahead

Each regulating federate establishes a "lookahead" value. The regulating federate promises that
any TSO events it generates will occur equal to and no earlier than "tcurrent + tlookahead." The
lookahead value, tlookahead, represents a contract between the regulating federate and the
federation. It establishes the earliest possible TSO event the federate can generate relative to the
current time, tcurrent.

Regulating federates must specify a lookahead value at the time they become regulating.
Facilities exist to alter the lookahead value dynamically. It is possible to specify a lookahead
value of zero. However, zero lookahead places extra constraints on a federate. When operating
with a zero lookahead, the reference manual pages, for time management, should be read
carefully to identify any special conditions and restrictions.

3.3.3. TSO Event

A TSO event is simply an event with an associated time-stamp. Only regulating federates can
generate TSO events.6 A regulating federate can generate multiple TSO and/or non-TSO events,
but all TSO events must occur at a time "tcurrent + tlookahead" or greater. Regulating federates need
not generate TSO events in time-stamp order. That is, a regulating federate might generate an
event at "tcurrent + tlookahead + 5" followed by another event at "tcurrent + tlookahead + 2." It is the job of
a constrained federate’s LRC to order TSO events.

3.3.4. Constrained

A federate that declares itself to be "constrained" is capable of receiving TSO events. Federates
that are not constrained still learn of TSO events, but absent the time-stamp information.7

3.3.5. Lower bound time stamp (LBTS)

Constrained federates have an associated LBTS.8 The LBTS specifies the time of the earliest
possible time-stamp-ordered event the federate can receive. The LBTS is determined by looking

5 Such events are referred to as "Receive-Ordered" v. "Time-Stamp-Ordered" and will be discussed subsequently.

6 There are additional requirements on TSO events that are discussed subsequently.

7 Again, events with no time-stamp are termed "Receive-Ordered" and are discussed subsequently.

The Role of Time

HLA RTI 1.3-Next Generation

3-4

at the earliest possible message that might be generated by all other regulating federates. It
changes as the regulating federates advance in time. A constrained federate cannot advance
beyond its LBTS (i.e., this is the constraint from whence the name constrained), because the RTI
can only guarantee there will be no more packets received prior to the LBTS.

3.43.43.43.4 Advancing Time

This section introduces a series of diagrams sometimes referred to as the six-axis diagrams.
Each axis represents a federate in a federation. Each federate is using it’s own time management
policy.

In Figure 3-2, five of six federates have joined an established federation. One of the federate's
has not shown up yet – it is said to be late arriving. The small, solid circles represent the
federation time as perceived by each federate. It is extremely important to understand that there
is no universal "federation time" (at any given point each federate could have different “current
times.” Each federate is free to increment time independently. Some federates will apply the
same time increment repeatedly. Other federates may jump through time based on the next
available TSO event or some other criteria.

8 All federates, constrained or not, have an LBTS value. LBTS is really only meaningful to constrained federates or
unconstrained federates planning to become constrained.

The Role of Time

HLA RTI 1.3-Next Generation

3-5

regulating

unknown

regulating and constrained

constrained

regulating and constrained

default

0 5 15 25 35 45 5510 20 30 40 50

Lookahead

Federate #1

Federate #2

Federate #3

Federate #4

Federate #5

Federate #6

LATE ARRIVING - NOT YET JOINED

Figure 3-2. Six-axis Diagram – Late Arrival

The thick, shaded regions in the diagram represent the lookahead values specified by regulating
federates. Federate #1’s lookahead is twice its time step interval. Federate #3 and #5 have
lookahead values that appear to be one time interval ahead. The lookahead values need not be
related to a federate's time interval (as we will see when Federate #2 arrives).

Clearly, each federate in this federation has a unique perspective on the current time.

Federate 1 t = 17 seconds
Federate 2 not applicable
Federate 3 t = 16 seconds
Federate 4 t = 18 seconds
Federate 5 t = 16 seconds
Federate 6 t = 0 seconds

It's valuable to pose the question, "Is this combination of perceived times legitimate?" In
general, unconstrained federates are free to progress through time. An unconstrained federate

The Role of Time

HLA RTI 1.3-Next Generation

3-6

has no requirement to request time advance grants through the RTI. For example, Federate #1
and Federate #6 can advance in time as fast as they want (or at least as fast as their simulation
model can run). Should these unconstrained federates request permission to advance in time,
their LRC realizes that they are unconstrained and grants permission to advance as a matter of
course.

3.4.1. LBTS Constraint

Constrained federates cannot proceed beyond their current LBTS. The LBTS for a given
federate is determined by calculating the earliest possible message a federate might receive from
other regulating federates. Enforcing the LBTS constraint requires coordination between
federate LRCs. As regulating federates advance, the LBTS of constrained federates increases.
Figure 3-3 illustrates the LBTS for constrained federates.

The vertical dashed lines in Figure 3-3 represent the earliest possible TSO message that can be
produced by each of the regulating federates – given their current time and their promised
lookahead values. Below each constrained federate, a horizontal line is extended from “t = 0” to
the federate’s LBTS. In Figure 3-3, it is clear that the current time as perceived by each of the
constrained federates is within their respective LBTS windows. Therefore, the “combination of
perceived times” for each federate shown is legitimate!

Constrained federates are free to advance in time to their LBTS, but no further. In Figure 3-3,
Federate #3 could increment to the next “tick mark” since the resulting time would be within its
LBTS. However, Federate #4 and Federate #5 cannot proceed to their next “tick mark,” as each
would have to move beyond its respective LBTS values.

The Role of Time

HLA RTI 1.3-Next Generation

3-7

regulating

regulating and constrained

regulating and constrained

constrained

regulating and constrained

default

0 5 15 25 35 45 5510 20 30 40 50

Lower Bound Time Stamp

Lookahead

Federate #1

Federate #2

Federate #3

Federate #4

Federate #5

Federate #6

LATE ARRIVING - NOT YET JOINED

Within LBTS

Beyond

Figure 3-3. LBTS for Constrained Federates

3.4.2. Late Arriving Federate

Up to this point, Federate #2 has not arrived on the scene. If Federate #2 were to arrive at this
point and insist upon being both regulating and constrained, it would be constrained as follows.
At the time Federate #2 joins the federation, the LBTS of previously joined regulating federates
will be calculated. Federate #2 must assume a time that ensures it will not generate a TSO
message earlier than this LBTS. Figure 3-4 illustrates the arrival of Federate #2. When it joins
the federation as a "regulating and constrained" federate, it is assigned an initial time of t = 20.
Note that the Federate #2's lookahead value is ignored for purposes of assigning an initial time.

The Role of Time

HLA RTI 1.3-Next Generation

3-8

regulating

regulating and constrained

regulating and constrained

constrained

regulating and constrained

default

0 5 15 25 35 45 5510 20 30 40 50

Federate #1

Federate #2

Federate #3

Federate #4

Federate #5

Federate #6

Assigned Time

Figure 3-4. Late-Arriving Federate

3.53.53.53.5 "Receive-Ordered" v. "TSO" Events

In order for an event to be delivered TSO, four things must be true:

1. The sender must be "regulating."

2. The receiver must be "constrained."

3. The event itself must be identified as TSO.

4. The time on the TSO packed must be greater than the LBTS contribution of the sending
regulating federate.

The third item refers to the time policy of the underlying event (e.g., an attribute update, an
interaction). In the FED file, the time management default policy for object attribute and

The Role of Time

HLA RTI 1.3-Next Generation

3-9

interaction is specified as either "receive" or "timestamp."9 Attribute instances and interaction
instances are delivered according to the time policy specified in the FED file, unless the default
policy is overridden.10

FIFO Receive Queue

Priority Time-Stamp

Per Federate Queues

Receive ordered events are
queued as they arrive (i.e.,
on a first-come-first-serve
basis). The FIFO queue
will be drained if the
federate provides sufficient
time to the LRC.

Time-stamp ordered events are
queued based on the associated
time value. The queue will be
drained up to and including
messages at the current federate
time if the federate provides
sufficient time to the LRC.

Figure 3-5. Per Federate Queues

As illustrated in Figure 3-5, each LRC maintains two queues. Events that meet the TSO criteria
are placed in the time-stamp queue. The time-stamp queue orders incoming events based on the
time stamp. Events that fail to meet the TSO criteria are placed in the receive queue in the order
in which they arrive. Information in the receive-order queue is immediately available to the
federate. The federate has access to all events in the TSO queue with time stamps less than or
equal to the federate's perceived time.

3.5.1. EXAMPLE 1

If Federate #3 (in Figure 3-4) generates a TSO event, Federate #6 would see the event as a
receive-ordered event. The event does not arrive as a TSO event because Federate #6 is
unconstrained and therefore incapable of receiving events in time-stamped order. The same

9 It is not possible to set the time policy of individual parameters of an interaction. Policy is set at the interaction level (i.e., "all or
nothing"). It is possible to specify time policy for individual attributes of an object. When an object with mixed time policies is
updated, the update may result in both receive-ordered and time-stamp-ordered events.

10 It is possible to adjust time policy on a per attribute or per instance basis. See the RTIambassador methods
changeAttributeOrderType() and changeInteractionOrderType() for more details.

The Role of Time

HLA RTI 1.3-Next Generation

3-10

event sent by Federate #3 and received by Federate #2 would be received as a TSO event
because Federate #2 is constrained, and Federate #3 is regulating.

3.5.2. EXAMPLE 2

If Federate #4 attempts to generate an event that is TSO by default (i.e., according to the FED
file), the event will be sent receive ordered since Federate #4 is not regulated. Only regulating
federates may associate a time tag with an event.

3.5.3. SUMMARY

It is important to note that information can be exchanged between federates capable of
communicating TSO events and federates that are not capable of communicating TSO events.
However, the events are communicated as receive-ordered – a least common denominator
approach.

FOM/SOM Development

HLA RTI 1.3-Next Generation

4-1

4. FOM/SOM Development

The Federation Development and Execution Process (FEDEP) Model depicted in Figure 4-1,
illustrates the major activities that should take place during the life cycle of a federation. This
model starts with the definition of federation objectives through the federation development and
concludes with the results of a running federation execution.

Figure 4-1. The Federation Development and Execution Process (FEDEP) Model

The HLA Federation Development and Execution Process (FEDEP) Model is intended to
identify and describe the sequence of activities necessary to construct HLA federations. The
HLA FEDEP Model description provided here has been heavily influenced by the experiences of
the HLA prototype federations and other HLA user organizations. Federation developers may
utilize the guidelines provided by the HLA FEDEP as a baseline process that may be tailored or
modified as appropriate to meet specific objectives. In all cases, the development methodologies
used to support the varying needs and interests of different application areas have been
identified, and “best practices” merged into a single, broadly applicable, high-level framework

Execute
Federation

and
Prepare
Results

6

Develop
Federation
Conceptual

Model

2

Design
Federation

3
Develop

Federation

4

Define
Federation
Objectives

1

Available
Resources

Program
Objectives

Federation
Objectives
Statement

Federation
Requirements

Federation
Conceptual
Model

Federation
Scenario

Initial Planning
Documents

Allocated
Federates

Federation
Development
Plan

FOM
FED file

Modified
Federates

Scenario
Instance

RTI RID File

Tested
Federation

Testing
Data

Test
Evaluation
Criteria

Reusable
Products

User
Feedback

Integrate
and
Test

Federation

5

FOM/SOM Development

HLA RTI 1.3-Next Generation

4-2

for HLA federation development and execution.11 This document may be obtained via the
DMSO website at http://hla.dmso.mil.

DMSO has sponsored the development of several tools that automate various activities in the
Federation Development and Execution Process. These tools are distributed freely via the HLA
Software Distribution Center (SDC). Interested participants may visit the website at
http://hla.dmso.mil to become a registered user and obtain the freely available software.

The Object Model Development Tool (OMDT) is the first tool to be developed. It is currently
available through the SDC. It supports the development of HLA compliant Simulation Object
Models (SOMs) and Federation Object Models (FOMs).

FOM and SOM development is somewhat outside the scope of a Programmer’s Guide for the
Run-Time Infrastructure. Development of a SOM and FOM is a prerequisite to effectively using
the RTI to facilitate interoperability between simulations. The FOM development process
requires that the entire system be considered to determine things such as the object model that
will describe the data communicated between the simulations, conditions for data update, and
various other information that is pertinent to the specification of a simulation system for
interoperability purposes. The Federation Execution Data (FED), which is required as an input
to the RTI, is a subset of a FOM along with the specification of some default values for Ordering
and Transport properties of data.

11 Portions of this chapter are lifted directly or paraphrased from the HLA 1.3 Federation Development and Execution Process
Model.

http://hla.dmso.mil/
http://hla.dmso.mil/

Federation Management

HLA RTI 1.3-Next Generation

5-1

5. Federation Management
5.15.15.15.1 Introduction

This chapter introduces the RTIambassador services and FederateAmbassador callback functions
that support federation management functionality. Federation management includes such tasks
as creating federations, joining federates to federations, observing federation-wide
synchronization points, effecting federation-wide saves and restores, resigning federates from
federations, and destroying federations.

5.25.25.25.2 Primary Functions

Figure 5-1 illustrates the primary functions associated with the federation life cycle. The
RTIambassador functions are presented alphabetically and in considerable detail in Appendix A,
RTI::RTIambassador.

Federation Management
Life Cycle

RTI

createFederationExecution()

joinFederationExecution()

resignFederationExecution()

destroyFederationExecution()

joinFederationExecution()

resignFederationExecution()

Figure 5-1. Federation Management Life Cycle

5.2.1. RTIambassador::createFederationExecution()

Because of calling the RTIambassador method createFederationExecution(), the Local RTI
Component (LRC) communicates with the RtiExec process. If the specified federation does not
exist, the RtiExec process creates a new FedExec process (as specified in Chapter 2, RTI
Synopsis) and associates it with the supplied federation name. If the specified federation already
exists, a FederationExecutionAlreadyExists exception is raised.

Frequently the same federate executable may be called upon to create a federation and at other
times may be asked to participate in an established federation. This is certainly the case if the
same simulation code is executed multiple times to function as multiple federates in a federation.
If the FederationExecutionAlreadyExists exception is caught and ignored, then the call to

Federation Management

HLA RTI 1.3-Next Generation

5-2

createFederationExecution() is robust – creating the federation if required and tolerating the
existence of an existing federation execution.

5.2.2. RTIambassador::joinFederationExecution()

The joinFederationExecution() method is called to associate a federate with an existing
federation execution. The method provides the non-unique name of the calling federate and the
name of the federation execution that the federate is attempting to join. Additionally, a pointer to
an instance of a class implementing the FederateAmbassador callback functions is required. The
joinFederationExecution() method effectively says, "Here I am; and, here's how to get in touch
with me."

5.2.3. RTIambassador::tick()

The tick() method is not a part of the Federation Management functionality identified in the High
Level Architecture Interface Specification Version 1.3. It is, however, a very important part of
the RTI 1.3-NG release. The LRC does a lot of work (e.g., exchanging information with
counterparts) and needs time to do that work. The tick() method yields time to the RTI.

The tick() method exists in two forms – one taking zero arguments and another taking two
arguments. The zero argument version yields time to each major activity within the LRC. A
typical activity would be draining inbound event queues and providing callbacks to the federate
via the FederateAmbassador. There is no guarantee as to the time required for a call to tick() to
complete. The two argument version of tick() also yields time to the LRC, but suggests lower
and upper bounds on the time being allotted to tick(). Like the no argument version, the two-
argument version makes no guarantees as to its overall execution time. It, too, yields time to
each major activity within the LRC, iterating as time permits.

Calling tick() is immensely important. Failure to tick() the LRC can lead to federation-wide
problems. For example, while a late arriving federate is attempting to join an existing federation,
information is being passed to the LRCs of the existing federates. If the existing federates are
not ticking their LRC, the late arriving federate (and probably everyone else) is effectively
blocked.

One final note, tick() is not an advancing time mechanism. See the Time Management section
(Chapter 6) for time advancement methodology and services.

5.2.4. RTIambassador::resignFederationExecution()

The RTIambassador method resignFederationExecution() terminates a federate's participation in
a federation. When a federate leaves a federation, something must be done with the objects for
which the federate has update responsibility. Typically, this responsibility extends to (a) object
instance (or object instance attributes) that the federate introduced (and has not negotiated away)
and (b) additional responsibilities the federate has assumed12.

12 The specific details of object creation and ownership management are left to subsequent chapters.

Federation Management

HLA RTI 1.3-Next Generation

5-3

The sole argument to resignFederationExecution() is a member of the ResignAction
enumeration. A federate can "RELEASE_ATTRIBUTES," "DELETE_OBJECTS,"
"DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES," or take "NO_ACTION." The
resignFederationExecution() manual page provides additional details.

5.2.5. RTIambassador::destroyFederationExecution()

The destroyFederationExecution() method attempts to terminate an executing federation. If
successful, the FedExec associated with the federation terminates. If the invoking federate is not
the last federate to have resigned and there are still federates joined in the targeted federation, a
FederatesCurrentlyJoined exception is raised.

5.35.35.35.3 FoodFight Example

The following code excerpt demonstrates typical code for creating and joining a federation.
01 void
02 CreateAndJoinFederation (Pstring federation_name,
03 Pstring federate_name)
04 {
05 // Abstract
06 // Attempt to create the FoodFight federation. Tolerate the fact
07 // that the federation may already exist -- i.e., that this is a
08 // "late arriving" federate.
09
10
11 // Attempt to create the FoodFight federation.
12 cout << "Creating the federation '" << federation_name << "'." << endl;
13
14
15 try
16 {
17 rti_ambassador.createFederationExecution(federation_name,
18 “FoodFight.fed”);
19 }
20 catch (RTI::FederationExecutionAlreadyExists&)
21 {
22 // Caught and ignored -- effectively allowing this condition.
23 cout << federation_name << " already exists." << endl;
24 }
25 catch (RTI::Exception& e)
26 {
27 cerr << "createFederationExecution() produced >" << &e << '<';
28 throw;
29 }
30 catch (...)
31 {
32 cerr << "createFederationExecution() produced unknown exception.";
33 throw;
34 }
35
36 cout << "RtiAmbWrapper: '" << federate_name << "' joining '"
37 << federation_name << "'." << endl;
38
39 // Attempt to join the federation.
40 for (int timer = RtiAmbWrapper::MAX_JOIN_TRIES; timer; /*NO-OP*/)
41 {

Federation Management

HLA RTI 1.3-Next Generation

5-4

42 try
43 {
44 RTI::FederateHandle fed_handle =
45 rti_ambassador.joinFederationExecution(
46 federate_name,
47 federation_name,
48 p_fedamb);
49
50 // If no exceptions encountered, abandon loop.
51 timer = 0;
52 }
53 catch (RTI::FederationExecutionDoesNotExist&)
54 {
55 if (--timer == 0)
56 {
57 cerr << "joinFederationExecution() failed.";
58 throw;
59 }
60 else
61 {
62 cout << "joinFederationExecution() failed, " << timer
63 << " tries left." << endl;
64 ::SleepInSeconds(1);
65 }
66 }
67 catch (RTI::Exception& e)
68 {
69 cerr << "joinFederationExecution() produced >" << &e << '<';
70 throw;
71 }
72 catch (...)
73 {
74 cerr << "joinFederationExecution() produced unknown exception.";
75 throw;
76 }
77 }
78 }

The important function calls in the proceeding example occur in lines 17 and 45 where the
federation is created and joined, respectively. The remaining code provides running commentary
to cout13 and exception handling. The FederationExecutionAlreadyExists exception is caught
and essentially ignored. Most remaining exceptions are caught, logged, and re-thrown.14

The call to joinFederationExecution() may produce the FederationExecutionDoesNotExist
exception. Once createFederationExecution() is called, it takes time to create and initialize the
resulting FedExec process. The preceding code, written for RTI 1.3v6, was designed to "spin"
until the join is successful or until a predetermined number of join attempts is exhausted.
However, this technique is no longer necessary. RTI 1.3-NG is ready to accept joining federates
upon return from the createFederationExecution() invocation.

13 This code is lifted from a training example; therefore, a lot of information is printed to the standard output.

14 There are some benefits to logging exceptions at the point of occurrence and as the exception passes up the call stack. The
resulting code is a little bulky, but the stack trace can simplify debugging.

Federation Management

HLA RTI 1.3-Next Generation

5-5

The following code illustrates how a federate might resign from and destroy a federation.
79 void
80 ResignAndDestroyFederation (Pstring federation_name,
81 Pstring federate_name)
82 {
83 cout << "Resigning from and attempting to destroy '" << federation_name
84 << "'." << endl;
85
86 try
87 {
88 rti_ambassador.resignFederationExecution(
89 RTI::DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES);
90 }
91 catch (RTI::Exception& e)
92 {
93 cerr << "resignFederationExecution() produced >" << &e << '<';
94 throw;
95 }
96 catch (...)
97 {
98 cerr << "resignFederationExecution() produced unknown exception.";
99 throw;
100 }
101
102 try
103 {
104 rti_ambassador.destroyFederationExecution(federation_name);
105 }
106 catch (RTI::FederatesCurrentlyJoined&)
107 {
108 // We'll allow this condition -- catching and ignoring.
109 }
110 catch (RTI::Exception& e)
111 {
112 cerr << "destroyFederationExecution() produced >" << &e << '<';
113 throw;
114 }
115 catch (...)
116 {
117 cerr << "destroyFederationExecution() produced unknown exception.";
118 throw;
119 }
120 }

The code supporting the destroyFederationExecution() call tolerates (i.e., catches and ignores)
the FederatesCurrentlyJoined exception. Other exceptions are caught, logged, and re-thrown.

Finally, the following code shows how tick() might be factored in.
121 void
122 PrimarySimulation (int regulating_flag,
123 int constrained_flag)
124 {
125 // Abstract
126 // This function produces the FoodFight simulation.
127
128 Pstring federation_name("FoodFight");
129 Pstring federate_name("ExampleFederate");
130

Federation Management

HLA RTI 1.3-Next Generation

5-6

131 // Create and join the FoodFight federation.
132 ::CreateAndJoinFederation(federation_name, federate_name);
133
134 while (... stuff to do ...)
135 {
136 ... do some simulation work ...
137
138 // Yield some time to the RTI.
139 ::rti_ambassador.tick(1.0, 1.0);
140 }
141
142 // Resign from the federation execution and attempt to destroy.
143 ::ResignAndDestroyFederation(federation_name, federate_name);
144 }

This tick() example is a bit oversimplified, but introduces the notion of yielding time to the LRC.

5.45.45.45.4 Federate Synchronization

The RTI 1.3 specification provides functions for synchronizing activities between federates
participating in a federation. The RTI provides mechanisms for exchanging information between
federates. It is possible to associate times with exchanged information and thereby coordinate
federate activities. The Federation Management synchronization functions allow federates to
communicate explicit synchronization points. Figure 5-2 illustrates the RTIambassador service
calls extended to a federate and the resulting FederateAmbassador callback functions that
together support a synchronization capability. The RTIambassador method
registerFederationSynchronizationPoint() accepts a label, a tag, and (optionally) a set of target
federates. [By default, all federates are targeted.] The label and tag are communicated to
targeted federates. The specific role of the label and tag are outlined in detail in the appendices.

Federation Management
Synchronization

RTI

registerFederationSynchronizationPoint ()

synchronizationPointAchieved ()

federationSynchronized ()

announceSynchronizationPoint ()

synchronizationPointRegistrationSucceeded ()

announceSynchronizationPoint ()

synchronizationPointAchieved ()

federationSynchronized ()

Figure 5-2. Federate Management Synchronization

Federation Management

HLA RTI 1.3-Next Generation

5-7

5.55.55.55.5 Save/Restore

The RTI provides functions for coordinating federation-wide saves and restores. Figures 5-3 and
5-4 illustrate save and restore functions, respectively. The programmer reference pages included
as Appendices A through C, should be consulted for syntactic and semantic details.

Federation Management
Save

RTI

requestFederationSave ()

federateSaveBegun ()

federationSaved ()

initiateFederateSave ()

federateSaveComplete ()

initiateFederateSave ()

federateSaveBegun ()

federateSaveComplete ()

federationSaved ()

Figure 5-3. Federation Management Save

Federation Management
Restore

RTI

requestFederationRestore ()

federateRestoreComplete ()

requestFederationRestoreSucceeded ()

federationRestoreBegun ()

initiateFederateRestore ()

federationRestored ()

federationRestoreBegun ()

initiateFederateRestore ()

federateRestoreComplete ()

federationRestored ()

Figure 5-4. Federation Management Restore

Time Management

HLA RTI 1.3-Next Generation

6-1

6. Time Management
6.16.16.16.1 Introduction

This chapter introduces the RTIambassador service and FederateAmbassador callback methods
that support time management functionality. The RTI provides a variety of optional time
management services. Though optional, it is important to understand the time management
models available in the RTI and the implication of exchanging events between federates with
different time management policies. Chapter 3, The Role of Time, introduces the philosophy of
time management. The focus here is on the mechanics required to implement time management
policies and negotiate time advances.

6.26.26.26.2 Toggling "regulating" and "constrained" Status

Chapter 3, The Role of Time, presented the definitions for "regulating" and "constrained." Figure
6-1 identifies the RTIambassador and FederateAmbassador member functions associated with
establishing whether a federate is regulating or not, and whether a federate is constrained or not.
Key methods are presented briefly below and discussed in detail in the appendices.

Time Management
Policy

RTI

enableTimeRegulation()

timeRegulationEnabled()

disableTimeRegulation()

enableTimeConstrained()

timeConstrainedEnabled()

disableTimeConstrained()

Figure 6-1. Toggling "regulating" and "constrained" Status

Time Management

HLA RTI 1.3-Next Generation

6-2

6.2.1. Regulation Policy

Federates have regulation disabled by default. A federate uses the RTIambassador member
function enableTimeRegulation() to request that the federate be acknowledged as a regulating
federate. The Local RTI Component (LRC) calls the FederateAmbassador callback
timeRegulationEnabled() to inform a federate that the enableTimeRegulation() request has been
granted and informs the federate of its (possibly new) logical time. In Section 3.4, Advancing
Time, the effect of a late arriving federate wishing to be time regulating was discussed. In short,
such a federate is obligated to advance to a time such that the current LBTS of existing federates
is guaranteed to be honored.

It is possible to change the regulation policy dynamically. The RTIambassador method
disableTimeRegulation() is the counterpart to enableTimeRegulation(). Unlike
enableTimeRegulation(), disableTimeRegulation() takes effect immediately.

6.2.2. Constrained Policy

Federates have constrained disabled by default. A federate uses the RTIambassador member
function enableTimeConstrained() to request that the federate be acknowledged as a constrained
federate. The timeConstrainedEnabled() callback informs a federate that the
enableTimeConstrained() request has been granted. It is possible to change the constrained
policy dynamically. The RTIambassador method disableTimeConstrained() is the counterpart to
enableTimeConstrained(). Unlike enableTimeConstrained(), disableTimeConstrained() takes
effect immediately.

6.36.36.36.3 Time Advance Requests

Three variants of the time advancement service exist to provide the requisite functionality for
time-step, event-based, and optimistic federates. Federates may employ any combination of time
management scheme and time advancement services throughout the execution.

6.3.1. Time-Stepped Federates

Time-stepped federates will calculate values based on a point in time and then process all events
that occur up to the next point in time (current time + time step). Figure 6-2 illustrates the
functions used to advance a federate's logical time for a time-stepped simulation.

When a timeAdvanceRequest() or timeAdvanceRequestAvailable() service is used, the federate’s
LRC will be eligible to release all receive order messages from the FIFO Queue and all time-
stamp ordered messages that have a time stamp less than or equal to the time requested from the
TSO queue. After all TSO messages in a federation execution with time less than or equal to the
requested time have been received, the federate will receive a timeAdvanceGrant() callback via
the FederateAmbassador with time equal to that which was requested in the
timeAdvanceRequest() or timeAdvanceRequestAvailable. See the time management manual
pages for a more detailed discussion of the released events and the granted time for the
timeAdvanceRequest() and timeAdvanceRequestAvailable() services.

Time Management

HLA RTI 1.3-Next Generation

6-3

Time Management
Time Step Advancement

RTI

timeAdvanceRequest()

timeAdvanceGrant()

Figure 6-2. Logical Time Advancement for a Time-Step Federate

6.3.2. Event-Based Federates

Event-based federates will calculate values based on each event received from the federation
execution. After an event is processed, the federate may need to send new events to the
federation execution. This implies that the events may not happen on set time intervals but the
times of events will be based on the time of the received events. Figure 6-3 illustrates the
functions used to advance a federate's logical time for an event-based simulation.

When a nextEventRequest() or nextEventRequestAvailable() service is used, the federate’s LRC
will be eligible to release all receive order messages from the FIFO Queue and all time-stamp
ordered messages that have a time stamp equal to the minimum next event time of any message
that will be delivered as TSO.

After all possible TSO messages with time equal to the minimum next event time have been
received, the federate will receive a timeAdvanceGrant() callback via the FederateAmbassador
with time equal to the minimum next event time or the time requested in the nextEventRequest()
or nextEventRequestAvailable(), whichever is less. See the programmer reference pages for a
more detailed discussion of the released events and the granted time for the nextEventRequest()
and nextEventRequestAvailable() services.

Time Management

HLA RTI 1.3-Next Generation

6-4

Time Management
Event-Based Advancement

RTI

nextEventRequest()

timeAdvanceGrant()

Figure 6-3. Logical Time Advancement for an Event-Based Federate

6.3.3. Optimistic Federates

Optimistic federates do not want to be constrained by the time advancement of regulating
federates but instead will proceed ahead of LBTS to calculate and send events in the future.
These federates will want to receive all of the events that have been sent in the federation
execution regardless of the time-stamp ordering. A federate that uses the flushQueueRequest()
service is likely to generate events that are in the future of messages that it has yet to receive.
The messages that are received with a time-stamp less than messages already sent may invalidate
the previous messages. In this case, the optimistic federate will need to retract the messages that
have been invalidated and all federates that have received the invalid messages will receive a
requestRetraction() callback on their FederateAmbassador. See the programmer reference pages
for a detailed discussion of the retract() and requestRetraction() services.

When the flushQueueRequest() service is used, the federate’s LRC will be eligible to release all
receive order messages from the FIFO Queue and all time-stamp ordered messages from the
TSO queue. After all TSO messages that were in the queue at the time of the
flushQueueRequest() invocation have been released, the federate will receive a
timeAdvanceGrant() callback via the FederateAmbassador with time equal to LBTS or the time

Time Management

HLA RTI 1.3-Next Generation

6-5

requested in the flushQueueRequest(), whichever is less. See the programmer reference pages
for a more detailed discussion of the released events and the granted time for the
flushQueueRequest() service. Figure 6-4 illustrates the functions used to advance a federate's
logical time for an optimistic simulation.

Time Management
Optimistic Advancement

RTI

timeAdvanceGrant()

flushQueueRequest()

Figure 6-4. Logical Time Advancement for an Optimistic Federate

6.46.46.46.4 FoodFight Example

Time advance requests are made through the RTIambassador instance. Time advance grants are
received through the FederateAmbassador instance. User code must unite the request and grant.
This pattern is repeated throughout the RTI. One approach to uniting code is to communicate
through global variables (globals).15 In the following examples, globals are used to tie the
following service request, callback pairs:

RTIambassador::enableTimeRegulation()→FederateAmbassador::timeRegulationEnabled()

RTIambassador::enableTimeConstrained()→FederateAmbassador::timeConstrainedEnabled()

15 Solutions that rely on globals typically do not scale well. Globals introduce a variety of additional problems. None the less,
globals are used here for compact examples where the emphasis is on the RTI application interface and not good programming
practices. Good C++ programmers should immediately see alternatives to the use of globals and will likely adopt an alternative
approach.

Time Management

HLA RTI 1.3-Next Generation

6-6

RTIambassador::timeAdvanceRequest()→FederateAmbassador::timeAdvanceGrant()

Whenever user-defined global variables or global functions are used in coding examples, they're
preceded by the global scope resolution operator "::". While it is a bad practice to use globals, it
is a good practice to identify any globals with this operator.

globals.h
145 #ifndef globals_h
146 #define globals_h
147
148 #include <RTI.hh>
149 :
150 // The time of the last time advance grant.
151 extern RTI::FedTime* p_current_time;
152
153 // The lookahead period promised by this federate. Set when federate
154 // attempts to become regulating.
155 extern RTI::FedTime* p_lookahead;
156
157 // Variable indicating whether we currently have a pending time advance
158 extern int time_advance_outstanding;
159
160 // Flag indicating if federate is constrained.
161 extern int regulation_enabled;
162
163 // Flag indicating if federate is constrained.
164 extern int constrain_enabled;
165 :
166 #endif
167 // globals_h

globals.cxx
168 #include "globals.h"
169 :
170 RTI::FedTime* p_current_time = new RTIfedTime(0.0);
171 RTI::FedTime* p_lookahead = 0; // Not set yet.
172 int time_advance_outstanding = 0;
173 int regulation_enabled = 0; // Disabled by default.
174 int constrain_enabled = 0; // Disabled by default.
175 :

::PrimarySimulation()
176 void
177 PrimarySimulation (int regulating_flag,
178 int constrained_flag)
179 {
180 // Abstract
181 // This function produces the FoodFight simulation.
182
183 Pstring federation_name("FoodFight");
184 Pstring federate_name("ExampleFederate");
185
186 // Create and join the FoodFight federation.

Time Management

HLA RTI 1.3-Next Generation

6-7

187 ::CreateAndJoinFederation(federation_name, federate_name);
188
189 // Set up time-management services.
190 if (regulating_flag)
191 {
192 ::p_lookahead = new RTIfedTime(1.0); // One second.
193 ::rti_ambassador.enableTimeRegulation(*::p_current_time,*::p_lookahead);
194
195 // A request to become regulating is, effectively, a time advance
196 // request.
197 ::time_advance_outstanding = 1;
198 }
199
200 if (constrained_flag)
201 {
202 cout << "Federate is constrained!" << endl;
203 ::rti_ambassador.enableTimeConstrained();
204 }
205 :
206 :
207 // The time interval for this federate has been set (arbitrarily) to the
208 // lookahead value.
209 RTI::FedTime* p_interval = new RTIfedTime(0.0);
210 *p_interval = *::p_lookahead;
211
212 while (::local_students.entries())
213 {
214 if (!::time_advance_outstanding)
215 {
216 // Do one interval's worth of simulation.
217 :
218 :
219 // Attempt to advance federate's logical time. The logical time
220 // isn't officially advanced until a time advance grant is
221 // received. If a regulating federate is still attempting to
222 // generate events, it should pretend like the time advance has
223 // been granted for the purpose of observing its lookahead promise.
224 *::p_current_time += *p_interval;
225 ::rti_ambassador.timeAdvanceRequest(*::p_current_time);
226 ::time_advance_outstanding = 1;
227 }
228 :
229 :
230 // Work to be interleaved with tick only!
231 :
232 :
233 // Tick the RTI, initiating federate ambassador callbacks.
234 ::rti_ambassador.tick(1.0, 1.0);
235 }
236
237 // Resign from the federation execution and attempt to destroy.
238 ::ResignAndDestroyFederation(federation_name, federate_name);
239 }

The two-argument form of tick() is called in the preceding example. In the example, the goal is
to slow the simulation so students can observe simulation progress. As an alternative to line 234,
the no-argument version of tick() might be used. Between calls to tick() and prior to receiving a
time advance grant, the federate may choose to interleave some preparatory work.

Time Management

HLA RTI 1.3-Next Generation

6-8

240 ::rti_ambassador.tick(); // Alternative to line 234 above.

FoodFightFedAmb.h
241 class FoodFightFedAmb : public DefaultFedAmb
242 {
243 // Abstract
244 // The DefaultFedAmb defines all the federate ambassador methods
245 // to "do nothing". Here, we override the ones we're interested
246 // in.
247
248 public:
249 virtual void timeRegulationEnabled (const FedTime&)
250 throw (InvalidFederationTime, EnableTimeRegulationWasNotPending,
251 FederateInternalError);
252
253 virtual void timeConstrainedEnabled (const FedTime&)
254 throw (InvalidFederationTime, EnableTimeConstrainedWasNotPending,
255 FederateInternalError);
256
257 virtual void timeAdvanceGrant (const RTI::FedTime&)
258 throw (RTI::InvalidFederationTime, RTI::TimeAdvanceWasNotInProgress,
259 RTI::FederateInternalError);
260
261 :

FoodFightFedAmb.cxx
262 :
263 void
264 FoodFightFedAmb::
265 timeRegulationEnabled (const FedTime& time)
266 throw (InvalidFederationTime, EnableTimeRegulationWasNotPending,
267 FederateInternalError)
268 {
269 cout << "Federate acknowledged as regulating!" << endl;
270 ::regulation_enabled = 1;
271 ::time_advance_outstanding = 0;
272 *::p_current_time = time;
273 }
274
275 void
276 FoodFightFedAmb::
277 timeConstrainedEnabled (const FedTime&) // Argument ignored below.
278 throw (InvalidFederationTime, EnableTimeConstrainedWasNotPending,
279 FederateInternalError)
280 {
281 cout << "Federate acknowledged as constrained!" << endl;
282 ::constrain_enabled = 1;
283 }
284
285 void
286 FoodFightFedAmb::
287 timeAdvanceGrant (const RTI::FedTime& time)
288 throw (RTI::InvalidFederationTime,
289 RTI::TimeAdvanceWasNotInProgress, RTI::FederateInternalError)
290 {
291 if (!::time_advance_outstanding)

Time Management

HLA RTI 1.3-Next Generation

6-9

292 {
293 const char* err_msg = "Unexpected timeAdvanceGrant().";
294 cerr << err_msg;
295 throw RTI::TimeAdvanceWasNotInProgress(err_msg);
296 }
297
298 if (time < *::p_current_time)
299 {
300 const char* err_msg = "Old time passed in timeAdvanceGrant().";
301 cerr << err_msg;
302 throw RTI::InvalidFederationTime(err_msg);
303 }
304
305 try
306 {
307 *::p_current_time = time;
308 ::time_advance_outstanding = 0;
309
310 // Display current time.
311
312 char* p_string(0);
313 p_current_time.getPrintableString(p_string);
314
315 cout << "t = " << p_string << endl;
316
317 delete p_string;
318 }
319 catch (...)
320 {
321 const char* err_msg = "Exception caught in timeAdvanceGrant().";
322 cerr << err_msg;
323 throw RTI::FederateInternalError(err_msg);
324 }
325 }
326 :

6.56.56.56.5 Time-Related Queries

Several additional time management functions are available to query or fine tune time policy.
Figure 6-4, Time Queries, shows additional functions. Consult the programmer reference pages
for these functions for detailed overall description of services.

Time Management

HLA RTI 1.3-Next Generation

6-10

Time Management
Queries

RTI

queryFederateTime()

queryLookahead()

modifyLookahead()

queryLBTS()

queryMinNextTimeEvent()

Figure 6-4. Time Queries

6.66.66.66.6 Polling vs. AsynchronousIO Tick() Strategies

There are currently two process model strategies that are supported by the RTI; (1) polling
process model and (2) asynchronous I/O process model. The polling process model uses a single
thread of execution shared between the RTI and the federate. This strategy requires that the
federate provide sufficient tick() invocations to transfer processor control to the LRC and allow
the RTI to perform work. The federate must be aware that it can starve the RTI if tick is not
called appropriately. The polling strategy model was only method provided by previous RTI
releases. The asynchronous I/O process model uses an internal thread within the RTI to avoid
starvation. This thread will periodically wake up and determine if it can perform any internal
RTI work. In the asynchronous I/O strategy the federate only needs to invoke tick when it is
prepared to handle callbacks. Use of the asynchronous I/O strategy requires the federate to
consider two key points. First, using the asynchronous I/O process model does not prohibit the
federate from calling tick anytime it is deemed appropriate. Second, data will be stored in the
queue until tick is called allowing for delivery and storage clearing. If tick is not called, by
either the RTI or the federate, there is a potential of memory exhaustion and data loss. Strategy
selection is made via the RTI.ProcessModel.StrategyToUse parameter in the RTI.rid file. The
default strategy is the asynchronous I/O process model.

Declaration Management

HLA RTI 1.3-Next Generation

7-1

7. Declaration Management
7.17.17.17.1 Introduction

This chapter introduces the RTIambassador service and FederateAmbassador callback methods
that support declaration management. Declaration management includes publication,
subscription and supporting control functions. Federates that produce objects instances (or
object attributes) or that produce interactions must declare exactly what they are able to publish
(i.e., generate). Federates that consume object instances (or object attributes) or that consume
interactions must declare their subscription interests.

The RTI keeps track of what participating federates can produce and what they are interested in
consuming and sends control signals to intelligently distribute notification of what is produced
based on consumer interest. As depicted in Figure 7-1, the RTI uses control signals to inform
producers exactly what they should transmit. The goal is to keep traffic off the communications
network.

I can
produce
planes!

Run Time Infrastructure (RTI)

Federate #1 Federate #2 Federate #3

I can
produce
tanks!

I can
consume
planes!

Figure 7-1. Control Signal Schema

7.27.27.27.2 Object Vocabulary Review

It is worth a moment to review some basic HLA terminology.

Object classes are comprised of attributes. Object classes describe types of things that can
persist. For example, "tank" might be an object class. Objects of type "tank" have certain
attributes (e.g., size, weight, and range). Actual, real tanks are instances of the object class tank.
The term "object" standing alone is sometimes used to describe an instance of a particular object

Declaration Management

HLA RTI 1.3-Next Generation

7-2

class, but sometimes refers to the type information. Object classes may be related to cookie
cutters and object instances to the cookies produced using the cookie cutters.

Interaction classes are comprised of parameters. Interaction classes describe types of events.
Interaction instances are specific events. It is fair to say, "Objects are similar to interactions in so
much as objects are comprised of attributes and interactions are comprised of parameters." The
HLA recognizes this inherent symmetry and leverages it when appropriate. The primary
difference between objects and interactions is persistence. Objects persist, interactions do not.

Would a missile be described by an object class or an interaction class? The answer depends on
the simulation and the persistence of missile instances. A simulation that focuses on missile
launchers and their targets may perceive missiles (or missile launches) as events. The launcher
fires a missile, which effects some damage. The time that the missile is in the air may be trivial
with respect to the simulation. Here, the missile could be modeled as an interaction – possibly
between the launcher and the target. Another simulation may focus on the in-flight
characteristics of missiles. The fact that the missile launches or impacts may be incidental.
Here, the missile persists and should be modeled as an object.

7.37.37.37.3 Object Hierarchies

Figure 7-2 illustrates a class hierarchy and accompanying Venn diagram. Object classes and
interaction classes can be constructed hierarchically. For example, assume that objects of type
W are comprised of the attributes "a," "b," "c," and "d" – abbreviated "{a, b, c, d}." It is possible
to define object classes that extend object class W. Object class W is extended to produce the
object classes X and Z. Object class X is further extended to produce the object class Y.

a b

c d

e

f

g
h

i
j

X Y
W

Z

W
a
b
c
d

X
e
f
g

Z
i
j

Y
h

W: {a, b, c, d}

X: {a. b. c. d. e. f. g} Z: {a, b, c, d, i, j}

Y: {a, b, c, d, e, f, g, h}

Declaration Management

HLA RTI 1.3-Next Generation

7-3

Figure 7-2. Class Hierarchy – Venn Diagram

Object-oriented programming enthusiasts will recognize such hierarchical representations.16

Various communities use different phrases to describe object hierarchies. Some examples
include:

X extends W.
W is a base type.

X is derived from W.
Y is a descendant of W.

W is the parent of Z.
X is a subclass of W.

Y inherits from X.
W is an ancestor of Z.

X is a child of W.
Y and Z are leaf objects.
W is the superclass of X.

The basic idea is that when an object class is extended to produce a new object class, the new
object class contains all the attributes of the class being extended and possibly more. The object
diagram and Venn diagram (Figure 7-2) illustrate the relationship between the object classes W,
X, Y, and Z. Object class W has the four attributes {a, b, c, d}, class X adds the attributes {e, f,
g} so instances of class X have attributes {a, b, c, d, e, f, g}.

7.47.47.47.4 Publishing and Subscribing Objects

Each federate must publish the object classes and interaction classes it plans to produce. It is
possible for a federate to publish a subset of the available attributes for a given class.

16 Developers with a strong object-orientation should note that HLA "objects" are defined primarily by their constituent data
elements rather than on behavior. In this way, HLA "objects" have more in common with relational models than object-oriented
models.

Declaration Management

HLA RTI 1.3-Next Generation

7-4

X
a b

c d

e

f

g
h

Y

Federate #1 Publishes Y w/
the following attributes:

 {b, e, f, g, h}.

and Subscribes
F d t #2 P bli hto X w/ the following
attributes: {a, b, c, d, e}.

Federate #2 Publishes

Figure 7-3. Object Publishing

7.4.1. Object Publication

In Figure 7-3, the object class Y contains the attributes {a, b, c, d, e, f, g, h}. A federate can
create instances of object class Y, without specifying all of the attributes associated with Y. For
example, Y might be a particular kind of aircraft. A given federate may know some information
about aircraft instances (e.g., position information), but relies on other federates to "fill in" the
missing pieces (e.g., intelligence about the aircraft). In such a case, the federate would indicate
that it could publish particular attributes associated with Y. Here, Federate #1 indicates that it
can publish attributes {b, e, f, g, and h} and Federate #2 indicates that it can publish attributes {a,
b, c, d, and e} for object class Y.

Each federate must indicate explicitly which attributes it can produce (i.e., introduce or update)
on a per class basis. Multiple federates may be able to publish Y instances. Federate #3 might
publish all of the attributes associated with object class Y. Another federate, Federate # 7, may
be able to publish attributes {a, c, f} for Y.

An implicit attribute, known by the name "privilegeToDelete," is included whenever a
publication capability is registered for an object class. Only the federate that created a particular
object instance is allowed to delete the instance unless the privilege to delete is conveyed to
another Federate. Chapter 9, Ownership Management, explores the ability to exchange attribute
update and object deletion responsibility among federates.

A federate must explicitly state every object class it intends to produce via the RTIambassador's
publishObjectClass() method. A separate call to publishObjectClass() is required for every
object class including objects that appear in class hierarchies. If Federate #9 wishes to produce
instances of object classes W, X, Y, and Z, it must say so explicitly using four publication calls
(one per object class).

Declaration Management

HLA RTI 1.3-Next Generation

7-5

7.4.2. Interaction Publication

As with object classes, each federate must state explicitly which interaction classes it intends to
produce using the publishInteractionClass() method. Interactions are produced as "all or
nothing." It is not possible to specify which parameters in an interaction will be published. If a
federate indicates that it intends to publish an interaction, it must be capable of specifying all
parameters associated with the interaction.

7.4.3. Object Subscription

Federates indicate their interest in certain object classes via the RTIambassador method
subscribeObjectClassAttributes(). Object subscription differs from object publication. When a
federate subscribes to an object class, it is expressing an interest in learning about all object
instances of the class. For example, a federate subscribing to object class X (as shown in Figure
7-2) will discover all instances of class X produced by other federates in the federation.
Additionally, a federate subscribing to X will discover all instances of class Y (produced by
other federates) as though they were instances of class X. This is an example of type promotion.

Whenever a federate expresses a subscription interest in a particular object class, the RTI
presumes that the federate is interested in instances of the descendant classes as well. A federate
subscribing to class W would see external instances of classes X, Y, and Z as instances of class
W. This can be a useful tool. Class W might represent all aircraft. Class X might represent
military aircraft, while class Y represents commercial aircraft. A federate may wish to know
about all aircraft, but not care about the details – including the military v. commercial
designation.

A federate is informed about a new object instance if (a) the federate has subscribed to the object
class of the instance or (b) the instance can be promoted (i.e., up the hierarchy) to a subscribed
object class. When an object is promoted, attributes particular to the original class are dropped.
An instance of object class Y has attributes {a, b, c, d, e, f, g, and h}.17 A federate subscribing to
object class X can discover the Y instance as an X. Since attribute "h" is not present in instances
of class X, that information is lost.

A federate can subscribe to multiple classes in a class hierarchy. If a federate subscribed to class
W and X, the following would be true:

• Instances of object class W would be seen without promotion.

• Instances of object class X would be seen without promotion.

• Instances of object class Y would be seen as instances of object class X.

• Instances of object class Z would be seen as instances of object class W.

17 Some attributes may not have assigned values. It depends on what the originating federate has published for this object and the
extent to which other federates have contributed to what's known about the instance.

Declaration Management

HLA RTI 1.3-Next Generation

7-6

When a federate discovers an object, it learns the object class of the instance. If the federate
discovers the object instance to be of object class X, it will always believe the object’s type to be
X. If a federate subscribes to class X and not to class Y, it will discover Y instances as X
instances. If the federate subsequently subscribes to class Y, object instances previously
discovered as X instances (via promotion) will continue to be seen as X instances. Subsequently
discovered instances of object class Y will be discovered as instances of object class Y.18

7.4.4. Interaction Subscription

As with object classes, each federate subscribes to the interaction classes it wishes to receive. It
is not possible to subscribe to individual parameters of an interaction class. Again, interactions
are "all or nothing." As with object classes, a federate is informed about a new interaction if (a)
the federate has subscribed to the interaction class of the interaction or (b) the interaction can be
promoted (i.e., up the hierarchy) to a subscribed interaction class. When an interaction instance
is promoted, only the parameters of the subscribed class are presented to the receiving federate.

7.4.5. Control Signals

In Figure 7-3, above, Federate #1 indicated that it was capable of producing Y instances, but
could only provide the attributes {b, e, f, g, and h}. In that same figure, Federate #2 subscribes
to attributes {a, b, c, d, and e} for object class X. The Y instances produced by Federate #1 are
discovered as X instances by Federate #2.

Federate #2 is only interested in a few of the Y attributes produced by Federate #1. As discussed
previously, Federate #2 cannot access attribute "h" since the attribute is not a part of class X.
Further, Federate #2 has no interest in attributes {f, g}. Of the information Federate #1 is able to
produce Y:{b, e, f, g, h}, only the information Y:{b, e} is required – assuming Federate #2 is the
only other federate in the federation.

The RTI issues control signals to indicate the information Federate #1 should produce. By
default, a federate should refrain from producing object updates unless the Local RTI
Component (LRC) has indicated that a consumer exists. If Federate #1 is first on the scene (i.e.,
there are no consumers), it will never be signaled to begin registering Y instance information.

Once Federate #2 arrives, the LRC will indicate to Federate #1 that it should register any
instances of object class Y with the federation execution and it should start providing updates for
Y:{b, e}. If Federate #2 goes away, Federate #1 will be told to stop registering instances of
object class Y and to stop providing updates for Y:{b, e}.

Each LRC informs it’s federate (via callbacks) which object attributes and which interactions to
start or stop producing based on consumer demand. Each federate’s Simulation Object Model

18 Rediscovery of an object instance can be forced using the RTIambassador::localDeleteObjectInstance() service. After object
class Y was subscribed to, a federate could “locally delete” all instances of object class X to rediscover the objects based on the
federate’s new subscriptions.

Declaration Management

HLA RTI 1.3-Next Generation

7-7

(SOM) will identify the extent to which the federate does or does not make use of the control
signals provided by the LRC.

7.57.57.57.5 Object Publication and Subscription

Each federate is responsible for identifying its publication and subscription interests to the RTI
LRC using the RTIambassador methods subscribeObjectClassAttributes()and
publishObjectClass(). The interaction diagram shown in Figure 7-4, Object Publication and
Subscription illustrates the procedure for building the information required to use these methods.

The publish and subscribe methods both require an RTI::ObjectClassHandle and an
RTI::AttributeHandleSet. The LRC has an internal representation for object classes, object class
attributes, interaction classes and interaction class parameter string representations that appear in
the FED file. RTIambassador methods like getObjectClassHandle() and getAttributeHandle()
translate character descriptions into LRC handles.

The (abstract) class RTI::AttributeHandleSet identifies a set of attributes – e.g., {a, b, c, d}. To
express interest in publishing or subscribing to an object class, the following steps are required.

For each object class to be published:

a) Obtain the handle for the current object class.

b) Create a free-store allocated AttributeHandleSet using the static create() method in the
class AttributeHandleSetFactory.

c) For each attribute the federate can publish:

i) Obtain the handle for the current attribute.

ii) Add the handle to the AttributeHandleSet

d) Publish/Subscribe the AttributeHandleSet for the object class.

e) Empty and delete the set if no longer needed.

Declaration Management

HLA RTI 1.3-Next Generation

7-8

Declaration Management
Objects

RTI

getObjectClassHandle()

subscribeObjectClassAttributes()

unsubscribeObjectClass()

publishObjectClass()

unpublishObjectClass()

getAttributeHandle()

startRegistrationForObjectClass()

stopRegistrationForObjectClass()

Figure 7-4. Object Publication and Subscription

7.67.67.67.6 Throttling Publications

The LRC signals a federate (via callbacks, as shown in Figure 7-4) to start or stop registering
object instances for all published object classes and generating interactions for all published
interaction classes.

7.77.77.77.7 FoodFight Object Declaration

The following code excerpts demonstrate publication and subscription to the object class
"Student" which has attributes "LunchMoney," "Cleanliness," and "AmmoAmount." The class

Declaration Management

HLA RTI 1.3-Next Generation

7-9

name and attribute names would appear in the FED file.19 The student object class also has the
hidden attribute "privilegeToDelete."20

7.7.1. Excerpt from Student.h

The following excerpt is taken from the declaration of the C++ class "Student." In this example,
a C++ class is used to realize the HLA object class "Student." This is but one possible way of
realizing an HLA object class. Information about students could be maintained in a database or a
C structure.

Student.h
327 :
328 class Student
329 {
330 friend ostream& operator<< (ostream&, const Student&);
331
332 public:
333 // In the following enumeration, ATTRIBUTE_COUNT denotes the end of the
334 // enumeration and is equal to the total number of attributes.
335 enum AttributeNames { PRIVILEGE_TO_DELETE = 0, LUNCH_MONEY,
336 CLEANLINESS, AMMO_AMOUNT, ATTRIBUTE_COUNT };
337
338 static const char* attribute_names[];
339
340 // Variables to store class handles.
341 static RTI::ObjectClassHandle class_handle;
342
343 // Array to store attribute/parameter handles.
344 static RTI::AttributeHandle attributes[];
345
346 static RTI::AttributeHandleSet* p_all_attribute_vector;
347
348 static void RegisterObject ();
349
350 :
351 :
352
353 // Student Characteristics
354 RTI::ObjectHandle getId () const { return id_self; }
355 double getLunchMoney () const { return lunch_money; }
356 double getCleanliness () const { return cleanliness; }
357 long getAmmoAmount () const { return ammo_amount; }
358
359 protected:
360 static const int BUY_AMMO_CHANCE;
361 static const double AMMO_COST_MEAN;

19 As of the RTI 1.3-NG release, names appearing in the FED file are case insensitive, so class "Student" could be specified
"student," "STUDENT," or "StUdEnT." In general, the case of the names in the Federation Object Model (FOM), Federation
Execution Data (FED), and federate source code should be considered as case-sensitive to ensure interoperability with all RTIs.

20 The privilegeToDelete attribute does not have to appear explicitly in the attribute publication list. It is included in the
Federation Execution Data (FED) file as the sole attribute of the objectRoot base class that all federation defined objects will
extend.

Declaration Management

HLA RTI 1.3-Next Generation

7-10

362 static const double AMMO_COST_ADJ;
363 static const int ATTEMPT_LAUNCH_CHANCE;
364
365 RTI::ObjectHandle id_self; // RTI ID by which this student is known.
366 double lunch_money; // Funds for new ammo.
367 double cleanliness; // Food damage the student has sustained.
368 unsigned long ammo_amount; // Launchable food possessed.
369
370 :
371 };

 The static function Student::RegisterObject() will eventually contain the code that registers this
federate's publication and subscription requests with regard to the object class Student. To
support this static registration process, several static variables are declared. The
Student::AttributeNames enumeration provides an identifier for each attribute in the HLA object
class Student. The static handle Student::class_handle will contain the LRC's internal
representation of the Student object class (type). The static array Student:: attribute_names will
hold the string representation of each attribute in Student. The static array Student::attributes
will house the LRC's internal handle for each Student attribute. Eventually, the pointer
Student::p_all_attribute_vector will identify a free-store allocated attribute handle set containing
all the attribute handles we wish to publish and subscribe.21

Student.cxx

Definitions for Student static variables are as follows.
372 :
373 const char* Student::attribute_names[Student::ATTRIBUTE_COUNT] = {
374 "privilegeToDelete", "LunchMoney", "Cleanliness", "AmmoAmount" };
375
376 RTI::ObjectClassHandle Student::class_handle
377 = RTI::ObjectClassHandle(); // Default constructor provides null handle.
378
379 RTI::AttributeHandle Student::attributes[Student::ATTRIBUTE_COUNT];
380
381 RTI::AttributeHandleSet* Student::p_all_attribute_vector = 0;
382 :

The publish and subscribe registration process is conducted by the static function
Student::RegisterObject().

383 void
384 Student::RegisterObject ()
385 {
386 // Abstract
387 // Register the class. Then, register each attribute recording the

21 In this particular example, the federate wishes to publish and subscribe all attributes of Student. In other applications a class
might be published only, subscribed only, or the set of published attributes may be entirely different from the set of subscribed
attributes.

Declaration Management

HLA RTI 1.3-Next Generation

7-11

388 // corresponding handle in the vector of all attributes (e.g.,
389 // p_all_attribute_vector).
390
391 const char* object_name = "Student";
392 cout << "Registering '" << object_name << "'." << endl;
393
394 class_handle = ::rtiAmb.getObjectClassHandle(object_name);
395
396 if (p_all_attribute_vector) delete p_all_attribute_vector;
397
398 p_all_attribute_vector
399 = RTI::AttributeHandleSetFactory::create(Student::ATTRIBUTE_COUNT);
400
401 for (int i = 0; i < ATTRIBUTE_COUNT; i++)
402 {
403 cout << "\tGetting attribute handle for '" << attribute_names[i]
404 << "'." << endl;
405
406 RTI::AttributeHandle handle = ::rtiAmb.getAttributeHandle(
407 attribute_names[i],
408 class_handle);
409
410 // Here, we maintain an array of handles and an attribute vector
411 // that contains all the handles for this class.
412 attributes[i] = handle;
413 p_all_attribute_vector->add(handle);
414 }
415
416 // Publish and subscribe to all attributes.
417 ::rtiAmb.publishObjectClass(class_handle, *p_all_attribute_vector);
418 ::rtiAmb.subscribeObjectClassAttributes(
419 class_handle,
420 *p_all_attribute_vector);
421
422 // NB: For now, not bothering to delete p_all_attribute_vector. It will
423 // live as long as the program does.
424 }

RegisterObject() closely follows the interactions identified in Figure 7.4, Object Publication and
Subscription.

7.7.2. Dynamic Object Publication and Subscription

Each call to publishObjectClass() and subscribeObjectClassAttributes() for an object class
replaces previous calls. The methods unpublishObjectClass() and unsubscribeObjectClass()
should be called when a federate is no longer interested in any attributes of an object class.

7.87.87.87.8 Publishing and Subscribing Interactions

Registering publication and subscription interest in interaction classes is more straightforward
than registering interest in object classes. Figure 7-5, Declaring Interactions, identifies
RTIambassador declaration management methods. Unlike object registration, interactions do not
have to be registered because they do not persist and you cannot specify interest in particular
interaction parameters. Interactions are "all or nothing."

Declaration Management

HLA RTI 1.3-Next Generation

7-12

Declaration Management
Interactions

RTI

getInteractionClassHandle()

unsubscribeInteractionClass()

unpublishInteractionClass()

subscribeInteractionClass()

publishInteractionClass()

turnInteractionsOn()

turnInteractionsOff()

Figure 7-5. Declaring Interactions

Splat.h
425 class Splat
426 {
427 friend ostream& operator<< (ostream& os, const Splat& splat);
428
429 public:
430 enum ParameterNames { ENSUING_MESS, TARGET, PARAMETER_COUNT};
431
432 static const char* parameter_names[];
433
434 // Variables to store class handles.
435 static RTI::InteractionClassHandle interaction_handle;
436
437 // Array to store attribute/parameter handles.
438 static RTI::ParameterHandle parameters[];
439
440 static void RegisterInteraction ();
441 :

Splat.cxx

Declaration Management

HLA RTI 1.3-Next Generation

7-13

442 const char* Splat::parameter_names[Splat::PARAMETER_COUNT] = {
443 "EnsuingMess", "Target" };
444
445 RTI::InteractionClassHandle Splat::interaction_handle
446 = RTI::InteractionClassHandle(); // Null handle.
447
448 RTI::ParameterHandle Splat::parameters[Splat::PARAMETER_COUNT];
449 :
450 :
451 void
452 Splat::RegisterInteraction ()
453 {
454 const char* interaction_name = "Splat";
455 cout << "Registering '" << interaction_name << "'." << endl;
456
457 // Register the interaction.
458 interaction_handle = ::rtiAmb.getInteractionClassHandle(interaction_name);
459
460 for (int i = 0; i < PARAMETER_COUNT; i++)
461 {
462 cout << "\tGetting parameter handle for '" << parameter_names[i]
463 << "'." << endl;
464
465 parameters[i] = ::rtiAmb.getParameterHandle(
466 parameter_names[i],
467 interaction_handle);
468 }
469
470 // Publish and subscribe interaction.
471 ::rtiAmb.publishInteractionClass(interaction_handle);
472 ::rtiAmb.subscribeInteractionClass(interaction_handle);
473 }

As with object class declaration, interaction interest can be declared dynamically. Each call to
publishInteractionClass() and subscribeInteractionClass() for an interaction class replaces
previous calls. The methods unpublishInteractionClass() and unsubscribeInteractionClass()
should be called when a federate is no longer interested in an interaction class.

Object Management

HLA RTI 1.3-Next Generation

8-1

8. Object Management
This chapter introduces the RTIambassador service and FederateAmbassador callback methods
that support object management. Object management includes instance registration and instance
updates on the object production side and instance discovery and reflection on the object
consumer side. Object management also includes methods associated with sending and
receiving interactions, controlling instance updates based on consumer demand, and other
miscellaneous support functions.

8.18.18.18.1 Registering, Discovering, and Deleting Object Instances

Figure 8-1 illustrates the required interactions for object instance registration and discovery. The
RTIambassador method registerObjectInstance() informs the Local RTI Component (LRC) that a
new object instance has come into existence. The method requires the object class of the new
object instance and an optional object name. The method returns an RTI::ObjectHandle which
the LRC uses to identify the particular object instance.

Object Management
Objects

RTI

registerObjectInstance()

discoverObjectInstance()

deleteObjectInstance()

removeObjectInstance()

turnUpdatesOnForObjectInstance()

Figure 8-1. Object Management Methodology

Registration introduces an object instance to the federation. However, it does not provide
attribute values for the instance. That requires a second step.

Object Management

HLA RTI 1.3-Next Generation

8-2

Each and every object can be deleted by exactly one federate. Initially, the federate that creates
(registers) an object has the privilege to delete the object.22 In Figure 8-1, the RTIambassador
method deleteObjectInstance() is called to remove a registered object. The FederateAmbassador
removeObjectInstance() callback informs federates that a previously discovered object no longer
exists. The RTIambassador method localDeleteObjectInstance() effectively "undiscovers" an
object instance. This method does not ensure the object will be permanently undiscovered. This
service is intended to be used when a federate discovers an object as an instance of an object
class but would like to subscribe to object classes that extend the discovered class and then
rediscover the instance based on the new subscriptions. The object instance will be rediscovered
upon the next updateAttributeValues() invocation that meets the receiving federate’s
subscriptions.

8.28.28.28.2 Updating and Reflecting Object Attributes

To update one or more attributes associated with a registered object instance, a federate must
prepare an RTI::AttributeHandleValuePairSet. This set is similar to the RTI::AttributeHandleSet
discussed in Chapter 7, Declaration Management. An AttributeHandleSet, abbreviated AHS,
identifies a set of attributes. An AttributeHandleValuePairSet, AHVPS, identifies a set of
attributes and their values. The static function RTI::AttributeSetFactory::create() is used to
construct a free-store allocated AHVPS instance.23 In Chapter 7, Declaration Management, the
notation {a, b, c, and d} was used to identify four attributes by name. The notation can be
extended to accommodate attribute values – e.g., {a = 5, b = "Hello", c = 14.79821, d = -12}.

Attribute updates are provided for an object instance via the RTIambassador method
updateAttributeValues(). The method requires an ObjectHandle, which the LRC uses to identify
an object instance, an AHVPS and a descriptive character string (tag). An optional FedTime
argument will have meaning if the federate is "regulating," and one or more contained attributes
are TSO (see Chapter 3, The Role of Time, and Chapter 6, Time Management).

Figure 8-1 (previously introduced) and Figure 8-2, Object Management Updates, illustrates the
interactions required to discover and to reflect updates for external object instances. Discovery
is the counterpart to registration. Reflection is the counterpart to attribute updates. The
FederateAmbassador callback method discoverObjectInstance() informs the federate that a new
object instance has come into existence. The method provides an object handle, which will be
used to identify the object for subsequent updates. The method also identifies the object class of
the new object instance. It is important to note that the ObjectHandle is a global representation
maintained by the LRC. The same object instance is known to all federates by its globally
unique handle value.

22 Chapter 9, Ownership Management, explores functions for giving away the privilege to delete as well as the right to update
various attributes.

23 AHVPS is actually an abstract class; so, the factory function produces an AHVPS descendant (implementation).

Object Management

HLA RTI 1.3-Next Generation

8-3

Object Management
Updates

RTI

reflectAttributeValues()

updateAttributeValues()

provideAttributeValueUpdate()

requestObjectAttributeValueUpdate()

provideAttributeValueUpdate()

requestClassAttributeValueUpdate()

Figure 8-2. Object Management Updates

8.38.38.38.3 Encoding and Object Update

When producing an AHVPS, the federate is responsible for any data marshaling (encoding). The
LRC knows nothing about data content. It knows the names of object classes, the names of
attributes and the handle representations for object classes and attributes. The following code
demonstrates how an AHVPS is produced for the Student class introduced in previous chapters.
Data is encoded and the length of the encoding is communicated to the LRC.24 Ultimately, the
AHVPS is bound to an object instance handle in an updateAttributeValues() invocation.

In the example, each instance of the C++ class "Student" has an AHS named
"require_update_vector". As the state of Student instances change, affected attributes are added
to this update vector. The AHVPS is formed by iterating through the AHS update vector and
building handle-value pairs.

24 The AHVPS actually consist of triples, not pairs. The triple is (1) the attribute handle, (2) the corresponding value and (3) the
length of the encoding.

Object Management

HLA RTI 1.3-Next Generation

8-4

In the following example, the macro REINTERPRET_CAST(TYPE, EXPR) should be defined
as "reinterpret_cast<TYPE> (EXPR)" on platforms that support ANSI-style casts. With dated
compilers, a traditional cast might be used instead – "(TYPE) (EXPR)" .

474 RTI::AttributeHandleValuePairSet*
475 Student::getUpdatedValues ()
476 {
477 // Abstract
478 // Get AHVPS containing entries for every handle in the update
479 // vector (only!).
480
481 cout << id_self << " identifying updates." << endl;
482
483 RTI::AttributeHandleValuePairSet* p_set = 0;
484
485 if (require_update_vector.size()) // Is there work to do?
486 {
487 p_set = RTI::AttributeSetFactory::create(
488 require_update_vector.size());
489
490 for (unsigned long i = 0; i < require_update_vector.size(); ++i)
491 {
492 RTI::AttributeHandle handle
493 = require_update_vector.getHandle(i);
494
495 if (handle == Student::attributes[LUNCH_MONEY])
496 {
497 p_set->add(
498 handle,
499 REINTERPRET_CAST(const char*, &lunch_money),
500 sizeof(double));
501 }
502 else if (handle == Student::attributes[CLEANLINESS])
503 {
504 p_set->add(
505 handle,
506 REINTERPRET_CAST(const char*, &cleanliness),
507 sizeof(double));
508 }
509 else if (handle == Student::attributes[AMMO_AMOUNT])
510 {
511 p_set->add(
512 handle,
513 REINTERPRET_CAST(const char*, &ammo_amount),
514 sizeof(unsigned long));
515 }
516 else if (handle == Student::attributes[PRIVILEGE_TO_DELETE])
517 {
518 // Nothing to do. No reason to pass this (and it probably
519 // shouldn't occur.
520 }
521 else
522 {
523 const char* p_msg = "Student::getUpdatedValues() saw "
524 "unrecognized handle.";
525 cout << p_msg << endl;
526 throw RTI::AttributeNotKnown(p_msg);
527 }
528 }

Object Management

HLA RTI 1.3-Next Generation

8-5

529
530 require_update_vector.empty();
531 }
532
533 return p_set;
534 }

The example demonstrates the cascading "if" statements required to identify an arbitrary attribute
handle. It is tempting to try a switch() statement, but the LRC attribute values are not known
prior – so, constant-based switching is ruled out. Clearly, the approach used in this code
wouldn't scale for objects with large numbers of attributes. For such cases, it may be preferable
to (a) use a map (i.e., a hashing dictionary) to store attributes or (b) use fewer, more complex
attributes.

Attributes can be arbitrarily complex as long as they are documented properly in the FOM and
SOM.25 However, complicated attributes may be less reusable. It is a good idea to collect only
those things that genuinely belong together both in terms of the information and the update
frequency. For example, {longitude, latitude, altitude} might be combined into the single
attribute {position}. But, combining {name, grossWeight, fuelSupply} into a single attribute
would be a poor combination since the attribute "name" is likely to be updated at a very different
rate than "grossWeight" and these attributes may not belong together.

The demonstration code above does not take any steps to ensure that data is encoded in a
platform-independent way. This encoding strategy would not survive a federation with big
endian and little endian federates.

8.48.48.48.4 Decoding and Object Reflection

The FederateAmbassador callback method reflectAttributeValues() provides an AHVPS. The
following function decodes the AHVPS in a manner consistent with the encoding strategy.

535 void
536 Student::reflectExternalChanges (const RTI::AttributeHandleValuePairSet& set)
537 {
538 // Design Notes
539 // Values are bit copied; so, examples will not work across
540 // big/little endian boundaries.
541
542 cout << id_self << " incorporating reflected changes." << endl;
543
544 char buffer[MAX_BYTES_PER_VALUE];
545 unsigned long length;
546
547 // Iterate through the set, modifying corresponding attributes.
548 for (unsigned long i = 0; i < set.size(); ++i)
549 {
550 RTI::AttributeHandle handle = set.getHandle(i);
551
552 if (handle == Student::attributes[LUNCH_MONEY])

25 An existing hardware component utilizing a complex data structure, might provide updates for the whole structure rather than
structure components. In such cases, the whole structure might be combined to form a single attribute.

Object Management

HLA RTI 1.3-Next Generation

8-6

553 {
554 set.getValue(i, buffer, length);
555 lunch_money = *REINTERPRET_CAST(double*, buffer);
556 }
557 else if (handle == Student::attributes[CLEANLINESS])
558 {
559 set.getValue(i, buffer, length);
560 cleanliness = *REINTERPRET_CAST(double*, buffer);
561 }
562 else if (handle == Student::attributes[AMMO_AMOUNT])
563 {
564 set.getValue(i, buffer, length);
565 ammo_amount = *REINTERPRET_CAST(unsigned long*, buffer);
566 }
567 else if (handle == Student::attributes[PRIVILEGE_TO_DELETE])
568 {
569 // Nothing to do. Should not really be included in any update.
570 }
571 else
572 {
573 const char* p_msg = "Student::reflectExternalChanges() saw "
574 "unrecognized handle.";
575 cout << p_msg << endl;
576 throw RTI::AttributeNotKnown(p_msg);
577 }
578 }
579 }

8.58.58.58.5 Exchanging Interactions

Interactions are constructed in a similar fashion to the way attribute updates are constructed.
Recall that objects persist, interactions do not. Each interaction is constructed, sent, and
forgotten.26 Interaction recipients receive, decode, and apply the interaction. Figure 8-3,
Exchanging Interactions, lists the classes and methods involved in generating and consuming
interactions. RTIambassador methods are discussed in Appendix A, RTI::RTIambassador,
FederateAmbassador methods in Appendix B, RTI::FederateAmbassador, and the supporting
types (e.g., ParameterHandleValuePairSet and ParameterSetFactory) in Appendix C, Supporting
Types and Classes.

26 Interactions can be retracted. See the manual pages for details.

Object Management

HLA RTI 1.3-Next Generation

8-7

Object Management
Interactions

RTI

receiveInteraction()

sendInteraction()

Figure 8-3. Exchanging Interactions

8.68.68.68.6 Additional Object Control

Object attribute updates and interactions are conveyed between federates using one of two data
transportation schemes – "reliable" and "best effort". For objects, the transportation scheme is
specified at the level of individual attributes. For interactions, the transportation scheme is
specified at the interaction level (i.e., not the parameter level). By default, the transportation
scheme is specified per object/attribute name and per interaction name in the Federation
Execution Data (FED) file.

It is possible to change the transportation scheme dynamically for one or more attributes of a
specific object instance using the RTIambassador method changeAttributeTransportType(). It is
possible to change the transportation scheme dynamically for interactions by class name using
the RTIambassador method changeInteractionTransportType(). Figure 8-4 illustrates these
functions.

Object Management

HLA RTI 1.3-Next Generation

8-8

user_code fedamb : Federate
Ambassador

various : Misc
RtiLibClasses

rtiamb :
RTIambassador

changeAttributeTransportType (RTI::ObjectHandle,
const RTI::AttributeHandleSet&,

RTI::TransportationHandle)

changeInteractionTransportType (RTI::InteractionClassHandle,
RTI::TransportationHandle)

turnUpdatesOnForObjectInstance (RTI::ObjectHandle,
const RTI::AttributeHandleSet&)

turnUpdatesOffForObjectInstance (RTI::ObjectHandle,
const RTI::AttributeHandleSet&)

Federate Initiated Controls

RTI Initiated Controls

Figure 8-4. Additional Object Control

Figure 8-4 also shows two callback methods – turnUpdatesOnForObjectInstance() and
turnUpdatesOffForObjectInstance(). These methods are used to inform a federate whether or not
there is external interest in updates for specific attributes of specific object instances.27

8.6.1. Attribute Management

A particular federate may have created and registered a particular F-15 fighter. If one or more
federates are subscribed to overlapping attributes of this published object class, the LRC would
issue the turnUpdatesOnForObjectInstance() callback to specify the particular attributes for
which updates should be generated. If at some future point, there are no subscribed federates to
the F-15 object class, the LRC would invoke turnUpdatesOffForObjectInstance() – informing the
federate to cease updates for this particular object instance.

The federate should presume that there is no external interest (one or more subscribed federates)
in an object unless or until turnUpdatesOnForObjectInstance() is issued. Calls to
turnUpdatesOnForObjectInstance() and turnUpdatesOffForObjectInstance() are cumulative.
Each call to turnUpdatesOnForObjectInstance() adds to the set of attributes that should be
updated. Each call to turnUpdatesOffForObjectInstance() removes attributes from the set of
attributes that should be updated.

27 These functions are companions to the declaration management callback methods startRegistrationForObjectClass() and
stopRegistrationForObjectClass() (see Chapter 7, Declaration Management).

Object Management

HLA RTI 1.3-Next Generation

8-9

8.6.2. Enable/Disable Attribute Management

It is possible to disable the turnUpdatesOnForObjectInstance() and turnUpdatesOffForObject-
Instance() callbacks. . Two RTIambassador methods can be used to specify whether per object
instance control signals are generated or suppressed. These methods are (1)
enableAttributeRelevanceAdvisorySwitch() and (2) disableAttributeRelevanceAdvisory-
Switch().28

Attribute Scopes

Prior to communicating attribute updates for a subscription with region to a particular object
class, the LRC will (at the federate's discretion) provide the preliminary callback
attributesInScope() announcing that subsequent attribute updates for the specified object instance
with overlapping attributes may be forthcoming. A subsequent attributesOutOfScope() callback
would inform the federate that subsequent attribute updates for the specified object and specified
attribute set would no longer be provided. These signals will be generated or suppressed based
on the "attribute scope advisory switch" that is set by the RTIambassador methods
enableAttributeScopeAdvisorySwitch() and disableAttributeScopeAdvisorySwitch(). Figure 8-5
provides an interaction diagram for these methods.

28 These methods are not shown in the accompanying interaction diagram.

Object Management

HLA RTI 1.3-Next Generation

8-10

disableAttributeScopeAdvisorySwitch

user_code fedamb :
Ambassador

various : Misc
RtiLibClasse

rtiamb :
RTIambassador

enableAttributeScopeAdvisorySwitch

attributesInScope
const

attributesOutOfScope
const RTI::AttributeHandleSet&)

Received after object is registered
federate is clear to provide attribute

Figure 8-5. Scope Interactions

Ownership Management

HLA RTI 1.3-Next Generation

9-1

9. Ownership Management
9.19.19.19.1 Introduction

This chapter introduces the RTIambassador service and FederateAmbassador callback methods
that support ownership management. Chapter 7, Declaration Management, presented declaration
management methods supporting publication and subscription of objects and interactions.
Chapter 8, Object Management, explored methods for registering and updating object instances.

The RTI allows federates to share the responsibility for updating and deleting object instances
with a few restrictions. It is possible for an object instance to be wholly owned by a single
federate. In such a case, the owning federate has responsibility for updating all attributes
associated with the object and for deleting the object instance. It is possible for two or more
federates to share update responsibility for a single object instance. When update responsibility
for an object is shared, each of the participating federates has responsibility for a mutually
exclusive set of object attributes.29 Only one federate can have update responsibility for an
individual attribute of an individual object at any given time. In addition, only one federate has
the privilege to delete an object instance at any given time.

9.1.1. Push v. Pull

The ownership management methods provide a facility for exchanging attribute ownership
among federates in a federation execution using a "push" and/or a "pull" model.30 A federate can
try to give away responsibility for one or more attributes of an object instance – or push
ownership. Alternatively, a federate can try to acquire responsibility for one or more attributes
of an object instance – or pull ownership. The push model cannot thrust ownership onto an
unwitting federate. Similarly, the pull model cannot usurp ownership.

9.1.2. Privilege to Delete

The special attribute "privilegeToDelete" exists in all object instances (by default). The federate
that "owns" this attribute for an object instance has the right to delete the object. Federates can
exchange the “privilegeToDelete” attribute as they would any other attribute.

29 For a given object instance, some attributes may be unowned – i.e., no federate has update responsibility.

30 Push and pull models can be used in the same federation execution.

Ownership Management

HLA RTI 1.3-Next Generation

9-2

9.29.29.29.2 Ownership Pull

In Chapter 7, Declaration Management, Figure 7-2 introduced four object classes in a small
hierarchy – including the object class Y with attributes {a, b, c, d, e, f, g, h, ~}. The
“privilegeToDelete” attribute is shown graphically with a tilde. As mentioned above, multiple
federates may share update responsibility for a given object instance. In Figure 9-1, Federate #1
declares that it can publish attributes {b, e, f, g, h, ~}. Federate #4 declares that it can publish
attributes {a, c, d, ~}. Each federate implicitly publishes the “privilegeToDelete” attribute.31

Federate #1
Publishes Y

w/ the following
attributes:

{b, e, f, g, h}.
Federate #4 Publishes

Y w/ the following
attributes: {a, c, d}.

a b

c d

e

f

g
h

Y

~

Figure 9-1. Shared Update Responsibility

In this particular example, there is no contention for attribute ownership since the two federates
are interested in mutually exclusive attributes. However, only one federate can create a
particular object instance. If Federate #1 creates an instance of Y named "Yalpha," then it will
"own" Yalpha{b, e, f, g, h, ~} since it has published those attributes for object class Y. The
attributes Yalpha{a, c, d} are initially unowned.

If Federate #4 has subscribed to object class Y, it will discover Yalpha as soon as it is registered by
Federate #1.32 Federate #4 can attempt to acquire ownership (i.e., update responsibility) of any Y

31 When a federate indicates that it can publish an object class, the privilege to delete is assumed.

32 Federate #4 need not subscribe to the attributes produced by Federate #1 in order to discover Yalpha.

Ownership Management

HLA RTI 1.3-Next Generation

9-3

attributes for Yalpha. Figures 9-2 and 9-3 provide interaction diagrams that illustrate the pull
ownership model for orphaned and obtrusive “pulls” respectively.

Ownership Management
Pull (Orphaned-Attribute)

RTI

attributeOwnershipUnavailable()

attributeOwnershipAcquisitionIfAvailable()

attributeOwnershipAcquisitionNotification()
And / Or

Figure 9-2. Ownership Pull Interaction Diagram – Orphaned Attribute

Ownership Management

HLA RTI 1.3-Next Generation

9-4

Ownership Management
Pull (Intrusive)

RTI

attributeOwnershipAcquisition()

attributeOwnershipReleaseResponse()

attributeOwnershipAcquisitionNotification()

requestAttributeOwnershipRelease()

cancelAttributeOwnershipAcquisition()

confirmAttributeOwnershipAcquisitionCancellation()

Option

Figure 9-3. Ownership Pull Interaction Diagram – Intrusive

9.2.1. Attribute Ownership Acquisition

The RTIambassador method attributeOwnershipAcquisition() attempts to secure ownership of an
attribute whether or not it is currently owned by another federate. As an alternative, the method
attributeOwnershipAcquisitionIfAvailable() attempts to secure attributes that are not owned by
another federate. A call to attributeOwnershipAcquisition() ultimately results in one or more
requestAttributeOwnershipRelease() callback invocations if the requested attributes are owned
by other federates. When attributeOwnershipAcquisitionIfAvailable() is called, any attributes
that are already owned are reported via the attributeOwnershipUnavailable() callback. In order
to request ownership of attributes for a particular object instance, the requesting federate must
construct an attribute handle set. The procedure is outlined in Chapter 7, Declaration
Management.

9.2.2. Attribute Ownership Release

As discussed in the previous paragraph, a call to attributeOwnershipAcquisition() will produce a
requestAttributeOwnershipRelease() callback invocation on any federate that holds a requested
attribute. A federate fielding this callback responds with the RTIambassador method
attributeOwnershipReleaseReponse(). At a minimum, the federate should respond with a null
attribute handle set – indicating that the attributes cannot or will not be released. The federate is
free to give up none, some, or all of the requested attributes. The federate is released from

Ownership Management

HLA RTI 1.3-Next Generation

9-5

update and/or delete responsibility of all released attributes once it has called
attributeOwnershipReleaseReponse().

9.39.39.39.3 Ownership Push

Ownership push suggests that a federate owns update responsibility and/or the privilege to delete
for an object instance and wishes to transfer ownership to another federate. The ownership may
be surrendered "unconditionally" or "negotiated." Unconditional push releases a federate from
attribute update and/or deletion responsibility without any commitment from other federates to
assume these responsibilities. Negotiated push is a formal exchange where a federate retains
responsibility until a new owner is identified and a formal exchange process is completed.
Typical ownership push interactions are presented in Figure 9-4.

Ownership Management
Push

RTI

requestAttributeOwnershipAssumption()

attributeOwnershipAcquisitionNotification()

attributeOwnershipDivestitureNotification()

negotiatedAttributeOwnershipDivestiture()

cancelNegotiatedAttributeOwnershipDivestiture()
Option

attributeOwnershipAcquisition()

Figure 9-4. Ownership Push Interaction Diagram

9.3.1. Unconditional Push

A federate wishing to relieve itself immediately from attribute update responsibility for an object
instance and/or the responsibility of deleting the object instance, can call the RTIambassador
method unconditionalAttributeOwnershipDivestiture(). The federate is immediately free from
the attribute responsibilities (including privilegeToDelete if listed) for the specified object
instance.

9.3.2. Negotiated Push

A negotiated push is more involved than an unconditional push and is designed to ensure that
attribute update and object deletion responsibilities are not dropped. The federate wishing to let
go responsibilities calls the RTIambassador method negotiatedAttributeOwnershipDivestiture().
Federates that are capable of publishing any or all of the attributes being given away are notified

Ownership Management

HLA RTI 1.3-Next Generation

9-6

via the FederateAmbassador callback method requestAttributeOwnershipAssumption(). A
federate wishing to acquire one or more of the offered attributes makes use of one of the pull
methods – attributeOwnershipAcquisition() or attributeOwnershipAcquisitionIfAvailable().

As federates are found to assume the responsibilities being given away, the federate that initiated
the push receives the callback attributeOwnershipDivestitureNotification() – which informs the
federate that it is no longer responsible for the listed attributes. The federate(s) gaining
responsibility for the attributes is informed of its new responsibility with the callback method
attributeOwnershipAcquisitionNotification().

9.3.3. Complex Exchanges

Ownership exchange can be quite complex. In the push model, several federates may vie for
ownership of offered attributes. The pushing federate may not succeed in giving all the
requested attributes away. The contending federates may not get everything they ask for. A
federate that does not get everything it wants may try to surrender the attributes it did receive. A
federate that fails to get rid of everything it requested can let a negotiated divestiture stand or
issue an unconditional divestiture. Divestiture calls for a specific object instance replace any
previous calls for that instance.

9.49.49.49.4 Supporting Functions
9.4.1. Cancellation

Sometimes a federate reconsiders its decision during an ownership transfer. A federate
attempting to push ownership may decide that there are not any takers or otherwise decides to
retract the push offer. Push cancellation may be invoked by the RTIambassador method
cancelNegotiatedAttributeOwnershipDivestiture().

Similarly, a federate attempting to pull ownership of one or more attributes may wish to cancel
the exchange. The method cancelAttributeOwnershipAcquisition() cancels a pull. It is
acknowledged by the confirmAttributeOwnershipAcquisitionCancellation() callback method.
The methods in Figures 9-3 and 9-4 are available to cancel an in-progress exchange.

9.4.2. Queries

Two mechanisms exist for determining attribute ownership. The queryAttributeOwnership()
method seeks the federate currently responsible for a particular attribute of a particular object
instance. It solicits the informAttributeOwnership() callback on the FederateAmbassador that
delivers the handle of the owning federate.

The RTIambassador method isAttributeOwnedByFederate() returns a Boolean operator
indicating whether the issuing federate owns or does not own the specified attribute for the
specified object instance.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-1

10. Data Distribution Management
10.110.110.110.1 Introduction

This chapter introduces Data Distribution Management (DDM). As discussed in Chapter 7,
Declaration Management, the RTI uses publication and subscription information (declared by
federates participating in a federation) to throttle the data placed on the network. Control signals
issued by the RTI can be used to constrain type registration and instance updates. The RTI
effectively serves as an intelligent switch – matching up producers and consumers of data, based
on declared interests and without knowing details about the data format or content being
transported.

DDM provides a flexible and extensive mechanism for further isolating publication and
subscription interests – effectively extending the sophistication of the RTI's switching
capabilities. In DDM, a federation "routing space" is defined. The routing space is a collection
of "dimensions." The dimensions are used to define "regions." Each region is defined in terms
of a set of "extents." An extent is a bounded range defined across the dimensions of a routing
space. It represents a volume in the multi-dimensional routing space.

This chapter introduces DDM at a conceptual level and goes on to examine supporting
RTIambassador services and FederateAmbassador callbacks.

10.210.210.210.2 Example Routing Space
10.2.1. A Previous Example Revisited

If all this seems a bit confusing, perhaps an example will help. Chapter 7, Declaration
Management, presented a declaration management example. Figure 7-3 (repeated here as Figure
10-1) illustrates the publication interest of Federate #1 and the subscription interest of Federate
#2. Object class Y is a descendant of object class X (Figure 7-2, not reprinted).

X
a b

c d

e

f

g
h

Y

Federate #1 Publishes Y w/
the following attributes:

 {b, e, f, g, h}.

Federate #2 Subscribes
to X w/ the following

attributes: {a, b, c, d, e}.

Figure 10-1. Publication and Subscription Intersections

Data Distribution Management

HLA RTI 1.3-Next Generation

10-2

Federate #1 indicates that it is able to publish Y:{b, e, f, g, h}. Federate #2 indicates that it
wishes to subscribe to X:{a, b, c, d, e}. The RTI will promote instances of object class Y such
that Federate #2 sees these instances as X instances. Since there is a consumer for the
information produced by class Y, the RTI informs Federate #1 that it should register Y instances.
As suggested in Chapter 8, Object Management, the RTI can provide additional information to
Federate #1 indicating the specific attributes of specific object instances for which a subscription
interest (i.e., a consumer) exists.

10.2.2. A Routing Space

Consider a routing space defined by the three dimensions "longitude," "latitude," and "altitude."
Figure 10-2 illustrates such a routing space. For the examples in this chapter, this routing space
is indicated with the shorthand notation R{longitude, latitude, and altitude}.

Federate #1's
Region "Alpha"

Federate #2's
Region "Gamma"

Figure 10-2. Example Routing Space

Federates can fine-tune their subscription declarations and data updates in terms of regions
within the routing space. For example, Federate #1 might associate the attributes of an object
class Y:{b, e, f, g, h} with the following region:

RAlpha{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

Similarly, Federate #2 might subscribe in X:{a, b, c, d, e} with the region:

Data Distribution Management

HLA RTI 1.3-Next Generation

10-3

RGamma{longitude: 40°E - 46°E, latitude: 34°N - 40°N, altitude: 30,000 ft - 50,000 ft}

The overlap between the regions RAlpha and RGamma is relatively small. In fact, the intersection of
these two regions is:

RAlpha ∩ Gamma{longitude: 44°E - 46°E, latitude: 34°N - 37°N, altitude: 30,000 ft - 50,000 ft}

However, since the regions do intersect, the RTI will ensure that the data is communicated from
Federate #1 to Federate #2.

10.310.310.310.3 Defining Routing Spaces and Regions

As suggested in the preceding example, federates associate data with regions. The High Level
Architecture (HLA), on which the RTI is based, maintains a separation between the data and the
code that manipulates the data (i.e., the RTI). DDM introduces a generic means of defining
routing spaces and regions that do not require the RTI to have knowledge about a federation’s
data.

10.3.1. Routing Spaces

A routing space is essentially the problem space. Routing spaces identify all of the dimensions
on which a region might be defined. The previous example used the routing space R{longitude,
latitude, and altitude}.33 The example routing space has three dimensions. All federates in a
federation that elect to use routing spaces must agree upon the dimensions that form the routing
space as well as the worst case upper and lower bounds along each dimension. The FED file
specifies the routing spaces and the dimensions available to each federate within the federation.34

In the sample problem, the federates might have agreed upon a routing space bounded by a
longitude of 40°E to 50°E, a latitude of 30°N to 40°N, and an altitude of 0 to 50,000 feet. The
FED file includes parameters that identify the routing space (by name) and the dimensions (by
name). Beyond that federates must know the upper and lower bounds along each dimension in
the routing space.35

580 :
581 :
582 ;; (spaces
583 ;; (space <name>
584 ;; (dimension <name>)
585 ;; . . .
586 ;; (dimension <name>)
587 ;;)
588 ;; . . .
589 ;; (space <name>

33 This is a rather obvious routing space. Some less obvious choices will be discussed subsequently.

34 Note that the FED file may specify multiple routing spaces – all of which are available to federates.

35 This is very similar to the requirement that the federates must "know" how to encode and decode attribute values. The range of
possible values for each dimension is specified in the FOM routing space tables.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-4

590 ;; (dimension <name>)
591 ;; . . .
592 ;; (dimension <name>)
593 ;;)
594 ;;)

10.3.2. Extents

An extent is a volume defined by a range (minimum and maximum) along each dimension of a
routing space. For DDM to support arbitrary dimensions, a generic representation scheme is
needed to express extents. The scheme adopted by the RTI is as follows: The full range along a
given dimension is mapped onto the interval [MIN_EXTENT, MAX_EXTENT].36 Figure 10-3
illustrates a formula for translating a value "v" on the dimension "D" to a number in the range
[MIN_EXTENT, MAX_EXTENT]. In order to specify a range, two such values must be
mapped – one specifying the minimum value of the range and another specifying the maximum
value of the range.

Federate #1 (from in the example above (paragraph 10.2.2) specified the region:

RAlpha{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

DMin v DMax

MIN_EXTENT MAX_EXTENT
(0%) (100%)

Dimension

(v - D) x (MAX_EXTENT - MIN_EXTENT)Min

(D - D)Max Min

MIN_EXTENT+

Figure 10-3. Normalization of a Range in an Extent

10.3.3. Calculation of Extents

The region was specified in terms of one extent containing a range for each dimension. Here, the
extent is expressed in terms of range values on the dimension axis.

RAlpha{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

36 The values of MIN_EXTENT and MAX_EXTENT are defined by macros in the RTI header files and should be treated as
implementation-specific.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-5

Each range in the extent must be mapped onto the generic range (i.e., bounded by
MIN_EXTENT and MAX_EXTENT) for submittal to the RTI. In order to compute the
mapping, the minimum and maximum values along each dimension must be calculated.

EXTEMIEXTEMIEXTEMAalph imulongig
d

_
)45(

)__()44(
mi_ +

−
−×−=

EXTENMINEXTENTMINEXTENTMAXalpha imumlongitude _
)4050(

)__()4048(
max_ +

−
−×−=

EXTENTMINalpha

EXTENMINEXTENTMINEXTENTMAXalpha

imumlatitude

imumlatitude

_

_
)3040(

)__()3030(

min_

min_

=∴

+
−

−×−=

EXTENMINEXTENTMINEXTENTMAXalpha imumlatitude _
)3040(

)__()3037(
max_ +

−
−×−=

EXTENTMINalpha

EXTENTMINEXTENTMINEXTENTMAXalpha

imumaltitude

imumaltitude

_

_
)0000,50(

)__()00(

min_

min_

=∴

+
−

−×−=

EXTENTMAXEXTENTMINEXTENTMINEXTENTMAXalpha

EXTENTMINEXTENTMINEXTENTMAXalpha

imumaltitude

imumaltitude

_
)0000,50(

)__()0000,50(

max_

max_

=+−=∴

+
−

−×−=

10.3.4. Creative Dimensions

Federations are free to introduce dimensions that suit the needs of constituent federates. For
example, two candidate dimensions may be Frequency {with enumerated ranges defined as 1, 2,
3, 4, 5} or Military Ranks {with enumerated ranges defined as Private, Corporal, Sergeant,
Sergeant Major, so forth.}. Extents might be defined on each and incorporated into region
definitions. A radio frequency spectrum might serve as a dimension. Federates would define
regions that include a frequency range. Even a discrete, ordinal series might serve as a
dimension.

A dimension could be introduced identifying the "UpdateFrequency" of certain updates. It might
contain such values as "once per second," "once per 10 seconds," and "once per 60 seconds." A
producing federate capable of issuing update information every second could publish the updates
every second to a region including an UpdateFrequency with an extent that covered "once per
second." Every ten seconds, the federate would publish to a region that included an

Data Distribution Management

HLA RTI 1.3-Next Generation

10-6

UpdateFrequency extent that covered "once per second" and "once per 10 seconds." A federate
wishing to receive information every 10 seconds would construct its regions accordingly.37

10.3.5. Regions and Attributes

The RTI makes no intuitive connections between regions and attributes. For example, an
airplane object class might contain the attributes "longitude," "latitude," and "altitude." The
routing space might contain the dimensions "longitude," "latitude," and "altitude." The RTI does
not make any automatic associations between the class attribute "longitude" and the routing
space dimension "longitude." It is entirely up to the producing federate to associate events (e.g.,
object updates, interactions) with regions!

10.3.6. Oddly Shaped Regions

The RTI supports the specification of a rectangle-shaped region. Some simulations are interested
in oddly shaped regions. Complex areas can be defined by collecting multiple extents within a
region. However, use of numerous extents or artificially complex regions may have a negative
impact on performance. A federate may also use the RTI to specify initial thresholds and go on
to perform additional filtering within its simulation.

Figure 10-5 illustrates a cube-shaped region. A sphere appears within the cube. A federate
might subscribe to certain events within this cube-shaped region. All activities outside the cube
are suppressed by the RTI. The federate, however, is only interested in events within the inner
sphere. In this case, the federate must use additional information (e.g., object attribute values,
interaction parameter values) to discern whether received events are applicable or not.

r
2r

37 Clearly, some consideration would have to be given as to whether the ten second updates were differential or exhaustive.
Other schemes are also possible.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-7

Figure 10-5. Two-Layer Filtering

10.3.7. Thresholds

The RTI.rid file contains threshold values that can cause region specification to be treated as
fuzzy. The description of the RTI implementation class "Region" in Appendix C discusses how
thresholds can effectively extend regions.

10.3.8. Default Routing Space

The RTI provides a "default routing space." Events and requests that are not associated with a
particular routing space are automatically associated with the default routing space. The RTI
associates an RTI::SpaceHandle (i.e., a numeric representation) with every routing space. The
default routing space will have the value returned by RTI::SpaceHandle().

10.410.410.410.4 Creating Regions

Federates call the RTIambassador method createRegion() to construct a new region on a
specified routing space (see Appendix A, Class RTI::RTIambassador). The routing space must
be declared in the FED file. The createRegion() method returns a pointer to a free-store
allocated instance of the RTI::Region class (see Appendix C, Supporting Types and Classes).
Regions must be deleted with the RTIambassador method deleteRegion().

The following RTI::Region methods allow the federate to get and/or set the minimum and
maximum values of each extent range – one extent at a time:

getRangeLowerBound() getRangeUpperBound()
setRangeLowerBound() setRangeUpperBound()

Functions also exist to identify the routing space with which the region is associated. Once a
region has been modified locally, the changes must be communicated to the RTI. The
RTIambassador method notifyAboutRegionModification() exists for that purpose. Figure 10-6
illustrates the interactions required to create, alter, and delete a region.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-8

Data Distribution Management
Region Creation

RTI

createRegion()

notifyAboutRegionModification()

deleteRegion()

setRangeLowerBound()

setRangeUpperBound()

Figure 10-6. Region Methods

10.510.510.510.5 Binding Object Attributes to Regions

Object instance updates and interactions can be tied to regions on the sending federate and
subscriptions can be tied to regions on the receiving federate. Each federate maintains it's own
regions. Federates do not know anything about the regions of their peers.38

10.5.1. Attribute Updates and Regions

An "attribute instance" is a particular attribute of a particular object instance. The FED file
specifies the routing space for each attribute of an object class. A given attribute instance is only
associated with one region at any given time and the region must be specified on the appropriate
routing space.

The RTIambassador method associateRegionForUpdates() ties a set of attributes for a particular
object instance to a specified region. The counterpart method unassociateRegionForUpdates()
removes the association between a region and an object instance. In the event that an attribute

38 Receiving federates can use the RTI::AttributeHandleValuePairSet::getRegion(RTI::Ulong index) method to get the update
region of each attribute as well as the RTI::ParameterHandleValuePairSet::getRegion(void) method to get the update region for
an interaction.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-9

instance is not explicitly bound to a region, the RTI implicitly binds such instances to the default
region on the appropriate routing space.39

For attribute instances that are associated with different regions, multiple calls to
associateRegionForUpdates() are required. As an alternative, the RTIambassador method
registerObjectInstanceWithRegion() allows a federate to specify attribute-to-region mapping for
some or all attributes – i.e., without multiple calls to associateRegionForUpdates().

10.5.2. Attribute Subscriptions and Regions

Associating a region with a subscription is similar to associating a region with updates. The
RTIambassador method subscribeObjectClassAttributesWithRegion() allows a federate to
associate a set of attributes with a region for a given object class. The call is similar to the
declaration management call subscribeObjectClassAttributes(), but with a few important
changes. Whereas repeated calls to subscribeObjectClassAttributes() replaced prior calls,
multiple calls to subscribeObjectClassAttributesWithRegion() accrue – with the caveat that
individual attributes can only be associated with one region and that region will be the region
most recently specified. The method unsubscribeObjectClassWithRegion() removes interest in
certain attributes.40

10.5.3. Requesting Updates

The RTIambassador method requestClassAttributeValueUpdateWithRegion() solicits an attribute
update the same way as an requestClassAttributeValueUpdate(), but associates the request with a
region. It effectively solicits updates for the named attributes of all objects of a given class that
are associated with a region that intersects the identified region. Figures 10-7 through 10-9
illustrate the methods for managing attributes.

39 Recall, the default region for any given routing space, includes the entire routing space. Since the FED file specifies the
appropriate routing space per object attribute, the RTI knows which routing space and what default region to use.

40 It's tempting to expect this function to remove the association with a specific region in favor of a default region. This is not the
case. Interest in the specified attributes is abandoned all together.

Data Distribution Management

HLA RTI 1.3-Next Generation

10-10

Data Distribution Mgt. Slide 13

Data Distribution Management
Attributes (1)

RTI

createRegion()

notifyAboutRegionModification()

setRangeLowerBound()

setRangeUpperBound()

A.6.2

C.1.13

C.1.13
A.6.4

createRegion()

notifyAboutRegionModification()

setRangeLowerBound()

setRangeUpperBound()

A.6.2

C.1.13

C.1.13

A.6.4

publishObjectClass()
A.2.2

subscribeObjectClassAttributesWithRegion()

startRegistrationForObjectClass()

A.6.13

B.2.2

Cont.

Figure 10-7. DDM Attributes (Part 1 of 3)

Data Distribution Mgt. Slide 14

Data Distribution Management
Attributes (2)

Cont.

Cont.

registerObjectInstanceWithRegion()

requestClassAttributeValueUpdateWithRegion()

provideAttributeValueUpdate()

discoverObjectInstance()

turnUpdatesOnForObjectInstance()

attributesInScope()

enableAttributeRelevanceAdvisorySwitch()

enableAttributeScopeAdvisorySwitch()

A.6.5

A.7.7

A.7.8

B.3.4

B.3.14

B.3.1

A.6.7

B.3.5

updateAttributeValues()
A.3.12

reflectAttributeValues()
B.3.7

Figure 10-8. DDM Attributes (Part 2 of 3)

Data Distribution Management

HLA RTI 1.3-Next Generation

10-11

Data Distribution Mgt. Slide 15

Data Distribution Management
Attributes (3)

Cont.

unsubscribeObjectClassWithRegion ()

stopRegistrationForObjectClass ()
B.2.5

turnUpdatesOffForObjectInstance ()
B.3.12

deleteObjectInstance () A.3.4

removeObjectInstance ()
B.3.10

deleteRegion ()
A.6.3

deleteRegion ()
A.6.3

Figure 10-9. DDM Attributes (Part 3 of 3)

10.5.4. Object Ownership and Regions

When federates exchange ownership of attribute instances, the region associations for the
attribute instances will not be maintained for the federate acquiring ownership.

10.5.5. Time and Regions

As with the declaration management services, methods that associate regions with attribute
instances or with subscriptions take place immediately and are not subject to time management
(i.e., such specifications cannot be tied to a future time).

10.610.610.610.6 Binding Interactions to Regions

Interactions may be bound to regions; however, such bindings are "all or nothing." It is not
possible to associate specific interaction parameters with different regions. DDM methods for
interactions are presented in Figure 10-10. The RTIambassador method
sendInteractionWithRegion() allows a producing federate to tie an interaction to a region. The
methods subscribeInteractionClassWithRegion() and unsubscribeInteractionClassWithRegion()
can be used to tie a region to an interaction subscription (i.e., on the interaction recipient side).

Data Distribution Management

HLA RTI 1.3-Next Generation

10-12

Data Distribution Management
Interactions

RTI

sendInteractionWithRegion()

subscribeInteractionClassWithRegion()

unsubscribeInteractionClassWithRegion()

turnInteractionsOn()

turnInteractionsOff()

receiveInteraction()

Figure 10-10. Interactions and DDM

Management Object Model

HLA RTI 1.3-Next Generation

11-1

11. Management Object Model
11.111.111.111.1 Introduction to the Management Object Model

The Management Object Model (MOM) consists of a number of object and interaction classes that must
be present in the encoded FOM hierarchy of any FED file intended for use with the RTI. These classes
constitute a mechanism by which federates may obtain information about the internal and external
characteristics of the LRCs comprising the federation. Typically, this information will be combined by
a “manager” federate and used to monitor and tune the operation of an active federation.

The RTI 1.3-NG software implements the MOM hierarchy described in HLA Interface Specification
version 1.3. The HLA 1.3 MOM consists of the following primary components.

• A Manager.Federate object class, which is instantiated exactly once per federate by the
federate’s LRC.

• A Manager.Federation object class, which is instantiated exactly once per federation execution
by the RTI.

• A Manager.Federate.Adjust hierarchy of interactions, which may be sent by federates to effect
changes in the internal and external characteristics of the LRCs comprising the federation.

• A Manager.Federate.Request hierarchy of interactions, which may be sent by federates to solicit
reports on the internal and external characteristics of the LRCs comprising the federation.

• A Manager.Federate.Report hierarchy of interactions, which are sent by LRCs in response to
information requests initiated by federates.

• A Manager.Federate.Service hierarchy of interactions, which may be sent by federates to invoke
services and callbacks on remote LRCs and federates, respectively.

A federate’s LRC will automatically publish and subscribe various classes on behalf of the federate.
The publications and subscriptions are independent of any federate-level publications and subscriptions.
A federate must publish the appropriate interaction classes before sending out interaction instances, and
may subscribe to MOM object and interaction classes to receive reflections of MOM events.
All parameters and attributes of MOM classes are represented as null-terminated strings. Numeric
values are encoded as strings suitable for conversion using atol() or atof(). Lists of values and
composite types (i.e., C++ structs) are typically encoded as comma-delimited sequences containing the
elements comprising the list or composite entity. Federation Time parameters in the MOM interactions
sent by the user should be encoded using the RTI::FedTime.encode() method; however, for
received interactions, the Federation Time parameters are encoded with
RTI::FedTime.getPrintableString(). See the descriptions of specific MOM attributes and parameters for
more details.

Management Object Model

HLA RTI 1.3-Next Generation

11-2

11.211.211.211.2 Interactions
 Manager

SYNOPSIS
(class Manager reliable receive

(class ...)
)

DESCRIPTION
This class is the root of the MOM interaction class
hierarchy. It has no parameters and is not intended to be
directly subscribed or instantiated.

 Manager.Federate

SYNOPSIS
(class Federate reliable receive

(parameter Federate)
(class ...
)

)

DESCRIPTION
This class is the root of the hierarchy of MOM interactions
that are generated by or intended for an entity associated
with a specific federate handle (either the federate itself or
the LRC associated with the federate.) In RTI 1.3, all
interactions fall into this category. This class is not
intended to be directly subscribed or instantiated.
In the Adjust, Request, and Service sub-hierarchies, the
federate-handle parameter denotes the intended recipient of
the interaction. In the Report sub-hierarchy, the federate-
handle parameter denotes the sender of the interaction.

PARAMETERS
Federate

the federate handle (as returned by
joinFederationExecution()) of the federate or
LRC sender or recipient of the interaction

Manager.Federate.Adjust

SYNOPSIS
(class Adjust reliable receive

(class ...
)

)

DESCRIPTION
This class is the root of the hierarchy of MOM interaction
classes used to modify internal characteristics of an LRC.
This class should not be directly subscribed or instantiated.
Subclasses of this class are intended to be generated by
federates and reacted to by LRCs. The Federate parameter
inherited from Manager.Federate specifies the recipient
LRC of an interaction instance.

Manager.Federate.Adjust.ModifyAttributeState

SYNOPSIS
(class ModifyAttributeState reliable receive

(parameter ObjectInstance)
(parameter Attribute)
(parameter AttributeState)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
cause an instance-attribute to become owned or unowned
by a specified federate, independent of RTI ownership
management services. This may result in the instance-
attribute being lost to the federation. However, if the
attribute is owned by another federate, any attempt to
assume ownership will fail. The attribute must first be set
to unowned.
The object instance affected by this interaction must be
known by the federate for which ownership is being
toggled. The class-attribute corresponding to the affected
instance-attribute need not be published by the federate.
The affected federate will receive no indication that the
ownership status of the instance-attribute has been
modified.
This interaction is intended to be used to recover instance-
attributes lost to a federation during a crash.
All three parameters must be present for an instance of this
interaction to be valid. If one or more parameters are
missing, the interaction has no effect.

PARAMETERS
ObjectInstance

the instance name of the object instance for which to
modify the state of the instance-attribute

Attribute
an attribute handle (taken in context of the actual class
of the object instance) representing the instance-
attribute whose state is to be modified

AttributeState
a string equal to “owned” or “unowned” (case-
insensitive), indicating the new state for the instance-
attribute at the receiving LRC

Manager.Federate.Adjust.SetServiceReporting

SYNOPSIS
(class SetServiceReporting reliable receive

(parameter ReportingState)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
toggle reporting of service calls by a specified LRC. When
service reporting is enabled at an LRC, it will send a
Manager.Federate.Report.ReportServiceInvocation
interaction for each federate- or RTI-initiated service call.
By default, service reporting is turned off for all LRCs.
It is illegal for a federate to have service reporting enabled
and to be subscribed to the
Manager.Federate.Reporting.ReportServiceInvocation
interaction, an Alert will be sent.

PARAMETERS
ReportingState

a string equal to “true” or “false” (case-insensitive),
indicating the new toggle state of service reporting at
the receiving LRC

Management Object Model

HLA RTI 1.3-Next Generation

11-3

Manager.Federate.Adjust.SetExceptionLogging

SYNOPSIS
(class SetExceptionLogging reliable receive

(parameter LoggingState)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
toggle logging of exceptions by a specified LRC. Turning
logging off stops all exceptions from being written to the
federate log file. By default, the log file is written to the
federate’s current directory, in a file named

<File Prefix>-<Fed Name>
where

<File Prefix> is the file prefix specified by the
ExceptionLoggingFilePrefix RID parameter (default
value: “RtiMomExceptionLoggingFile”)
<Fed Name> is the federate’s name as specified in the
call to joinFederationExecution().

Each exception entry lists the date and time that the
exception is logged, followed by the exception name and its
description.
By default, logging is turned off for all LRCs.

PARAMETERS
LoggingState

a string equal to “true” or “false” (case-sensitive),
indicating the new toggle state of logging at the
receiving LRC

Manager.Federate.Adjust.SetTiming

SYNOPSIS
(class SetTiming reliable receive

(parameter ReportPeriod)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
set the frequency at which a specified LRC will generate
updates for the Manager.Federate object representing its
local federate. A value of zero may be specified to disable
updates by the specified LRC.
By default, an LRC does not generate periodic updates for
its local Manager.Federate object.

PARAMETERS
ReportPeriod

a positive integer value representing a time (in
seconds) used to set the update period, or zero to
disable updates

Manager.Federate.Report

SYNOPSIS
(class Report reliable receive

...
)

DESCRIPTION
This class is the root of the hierarchy of MOM interaction

classes generated by LRCs to report various characteristics
of LRC and federate state. This class should not be directly
subscribed or instantiated. Subclasses of this class are
indented to be subscribed by federates and generated by
LRCs. The Federate parameter inherited from
Manager.Federate specifies the LRC sender of an
interaction instance.

Manager.Federate.Report.Alert

SYNOPSIS
(class Alert reliable receive

(parameter AlertSeverity)
(parameter AlertDescription)
(parameter AlertID)

)

DESCRIPTION
Interactions of this class are generated by an LRC
whenever it throws an exception.

PARAMETERS
AlertSeverity

A text string representing the severity of the exception
thrown by the LRC; it will be one of the following:

• “RTI exception”

• “RTI internal error”

• “Federate internal error”

• “Warning” (not supported)

• “Diagnostic” (not supported)
AlertDescription

the text associated with the exception;, this includes
the type-name of the exception class and a string
description of the reason for the exception

AlertID
an integer indicating the alert count; this count is
incremented after each Alert is sent

Manager.Federate.Report.ReportInteractionPublication

SYNOPSIS
(class ReportInteractionPublication reliable
receive

(parameter InteractionClassList)
)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestPublications
interactions. This interaction reports only the interaction
classes published by the federate itself (i.e., it does not
include interaction classes published by the LRC on behalf
of the federate.)

PARAMETERS
InteractionClassList

a comma-delimited list of interaction class handles

Management Object Model

HLA RTI 1.3-Next Generation

11-4

being published by the reporting federate (null if no
interaction classes were published).

Manager.Federate.Report.ReportInteractionsReceived

SYNOPSIS
(class ReportInteractionsReceived reliable receive

(parameter TransportationType)
(parameter InteractionCounts)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestInteractionsReceived
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report details the interactions that
have been delivered to the federate, tabulated according to
the actual classes of the interactions (which is not
necessarily the same as the classes by which the
interactions were actually presented to the federate.) These
counts do not include MOM interactions that were not
delivered to the federate, nor do they include interactions
used for internal RTI communications.

PARAMETERS
TransportationType

a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

InteractionCounts
a comma-delimited list of pairs of the form
“<class>/<count>” where class is an interaction class
handle and count is the number of interactions that
have been delivered to the federate of that class; only
classes that have a non-zero count are listed (null if no
interactions were received)

Manager.Federate.Report.ReportInteractionsSent

SYNOPSIS
(class ReportInteractionsSent reliable receive

(parameter TransportationType)
(parameter InteractionCounts)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestInteractionsSent
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report details the interactions that
have been sent by the federate, tabulated according to the
classes of the interactions. These counts do not include
MOM interactions that sent by the LRC on behalf of the
federate, nor do they include interactions used for internal
RTI communications.

PARAMETERS
TransportationType

a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

InteractionCounts
a comma-delimited list of pairs of the form
“<class>/<count>” where class is an interaction class
handle and count is the number of interactions that
have been sent by the federate of that class; only
classes that have a non-zero count are listed (null if no
interactions were sent)

Manager.Federate.Report.ReportInteractionSubscripti
on

SYNOPSIS
(class ReportInteractionSubscription reliable
receive

(parameter InteractionClassList)
)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestSubscriptions
interactions. This interaction reports only the interaction
classes subscribed by the federate itself (i.e., it does not
include interaction classes subscribed by the LRC on behalf
of the federate.)

PARAMETERS
InteractionClassList

a comma-delimited list of interaction class handles
being subscribed by the reporting federate (null if no
interaction classes were subscribed)

 Manager.Federate.Report.ReportObjectInformation

SYNOPSIS
(class ReportObjectInformation reliable receive

(parameter ObjectInstance)
(parameter OwnedAttributeList)
(parameter RegisteredClass)
(parameter KnownClass)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectInformation
interactions.

PARAMETERS
ObjectInstance

the object name corresponding to the instance subject
of the report

OwnedAttributeList
a comma-delimited list of attribute handles (in the
context of the actual object class of the instance)
representing any instance-attributes of the object
owned by the reporting federate (null if the object
instance is invalid)

RegisteredClass
the class handle of the actual (registered) object class
of the object instance (null if the object instance is
invalid)

Management Object Model

HLA RTI 1.3-Next Generation

11-5

KnownClass
the class handle of the object class by which the
reporting federate has discovered the object, or the
actual class if the federate owns the object (null if the
object instance is invalid)

Manager.Federate.Report.ReportObjectPublication

SYNOPSIS
(class ReportObjectPublication reliable receive

(parameter NumberOfClasses)
(parameter ObjectClass)
(parameter AttributeList)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestPublications
interactions. This interaction reports only the object classes
published by the federate itself (i.e., it does not include
object classes published by the LRC on behalf of the
federate.)
Each publication request will result in a separate
ReportObjectPublication interaction for each object class
published by the federate. The NumberOfClasses
parameter – which is the same for each interaction
comprising the response – indicates the total number of
reports sent in response.

PARAMETERS
NumberOfClasses

an integer indicating the total number of object-
publication reports in the sequence this report is part
of

ObjectClass
the object class handle of the object class published by
the reporting federate

AttributeList
the attribute handles of the class-attributes of the
specified object class published by the reporting
federate (null if no object classes were published)

Manager.Federate.Report.ReportObjectsOwned

SYNOPSIS
(class ReportObjectsOwned reliable receive

(parameter ObjectCounts)
)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectsOwned
interactions. An object instance is considered owned by the
reporting federate if and only if the federate owns the
privilegeToDelete instance-attribute for the object. Objects
owned by the LRC on behalf of the federate (e.g., the
Manager.Federate object instance corresponding to the
federate) are not included in the count.
The report is tabulated according to the actual (registered)
object class of the object instances, which may not be the
same as the object classes by which they are known to the
federate.

PARAMETERS
ObjectCounts

a comma-delimited list of pairs of the form
“<class>/<count>” where class is an object class
handle and count is the number of instances of the
class for which the reporting federate holds the
privilege to delete (null if no objects are owned)

Manager.Federate.Report.ReportObjectsReflected

SYNOPSIS
(class ReportObjectsReflected reliable receive

(parameter ObjectCounts)
)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectsReflected
interactions. This report indicates the number of reflections
that have been delivered to the reporting federate by object
class (i.e., it does not include reflections processed
internally by the LRC.) If multiple
reflectAttributeValues() callbacks are made in
response to a single update (e.g., if different attributes are
sent reliably vs. best effort), they will be tallied
individually.
The report is tabulated according to the actual (registered)
object class of the object instances that were subjects of
reflections, which may not be the same as the object classes
by which they are known to the federate.

PARAMETERS
ObjectCounts

a comma-delimited list of pairs of the form
“<class>/<count>” where class is an object class
handle and count is the number of reflections
delivered to the federate for instances of the class;
only non-zero counts are listed (null if no objects were
reflected)

Management Object Model

HLA RTI 1.3-Next Generation

11-6

 Manager.Federate.Report.ReportObjectSubscription

SYNOPSIS
(class ReportObjectSubscription reliable receive

(parameter NumberOfClasses)
(parameter ObjectClass)
(parameter AttributeList)
(parameter Active)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestSubscriptions
interactions. This interaction reports only the interaction
classes subscribed by the federate itself (i.e., it does not
include interaction classes subscribed by the LRC on behalf
of the federate.)
Each subscription request will result in a separate
ReportObjectSubscription interaction for each object class
subscribed by the federate. The NumberOfClasses
parameter – which is the same for each interaction
comprising the response – indicates the total number of
reports sent in response.

PARAMETERS
NumberOfClasses

an integer indicating the total number of object-
publication reports in the sequence this report is part
of

ObjectClass
the object class handle of the object class published by
the reporting federate

AttributeList
the attribute handles of the class-attributes of the
specified object class published by the reporting
federate (null if no object classes were subscribed)

Active
a string equal to “True” or “False”, depending on the
type of the subscription

Manager.Federate.Report.ReportObjectsUpdated

SYNOPSIS
(class ReportObjectsUpdated reliable receive

(parameter ObjectCounts)
)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectsUpdated
interactions. This report indicates the number of object
instances for which the federate owns at least one instance-
attribute.
The report is tabulated according to the actual (registered)
object class of the object instances that the federate has
updated. This may differ from the object classes by which
the instances are actually known to the federate.

PARAMETERS
ObjectCounts

a comma-delimited list of pairs of the form

“<class>/<count>” where class is an object class
handle and count is the number of updates initiated by
the federate for instances of the class; only non-zero
counts are listed (null if no objects were updated)

Manager.Federate.Report.ReportReflectionsReceived

SYNOPSIS
(class ReportReflectionsReceived reliable receive

(parameter TransportationType)
(parameter ReflectCounts)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestReflectionsReceived
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report indicates the number of
reflections that have been delivered to the reporting
federate by object class (i.e., it does not include reflections
processed internally by the LRC.) If multiple
reflectAttributeValues() callbacks are made in
response to a single update (e.g., if different attributes are
sent reliably vs. best effort), they will be tallied
individually.
The report is tabulated according to the actual (registered)
object class of the object instances that were subjects of
reflections, which may not be the same as the object classes
by which they are known to the federate.

PARAMETERS
TransportationType

a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

ReflectCounts
a comma-delimited list of pairs of the form
“<class>/<count>” where class is an object class
handle and count is the number of reflections that have
been delivered to the federate for instances of the
class; only classes that have non-zero counts are listed
(null if no reflections were received)

Management Object Model

HLA RTI 1.3-Next Generation

11-7

 Manager.Federate.Report.ReportServiceInvocation

SYNOPSIS
(class ReportServiceInvocation reliable receive

(parameter Service)
(parameter Initiator)
(parameter SuccessIndicator)
(parameter SuppliedArgument1)
(parameter SuppliedArgument2)
(parameter SuppliedArgument3)
(parameter SuppliedArgument4)
(parameter SuppliedArgument5)
(parameter ReturnedArgument)
(parameter ExceptionDescription)
(parameter ExceptionID)

)

DESCRIPTION
If service logging is enabled for an LRC, the LRC will
generate an interaction of this class for every RTI- and
federate-ambassador service invocation made by/to the
local federate. The string representation of the various
types of arguments is as follows:

Type Representation
integers and longs string suitable for conversion using

atol()

strings the string value, passed as-is
RTI::FedTime The string returned by

RTI::FedTime.getPrintableString()
RTI::Boolean “True” or “False”

RTI::EventRetractionHandle integers suitable for conversion
using atol(), separated by

commas, representing the serial
number and sending federate,

respectively
RTI::AttributeHandleSet,

RTI::AttributeHandleValuePairSet,
RTI::ParameterHandleValuePairSet

comma-delimited list of integers
suitable for conversion using
atol() (attribute/parameter

values are not represented)
RTI::Region The memory address of the region

It is illegal for a federate to have service reporting enabled
and to be subscribed to the
Manager.Federate.Report.ReportServiceInvocation
interaction. If a federate has service reporting enabled and
attempts to subscribe to the
Manager.Federate.Report.ReportServiceInvocation
interaction, a FederateLoggingServiceCalls exception is
thrown

PARAMETERS
Service

the name of the C++ method implementing the service
Initiator

a string, “FED” or “RTI”, indicating an RTI- or
federate-ambassador service, respectively

SuccessIndicator
a string, “True” or “False” indicating whether the
service completed successfully

SuppliedArgument1
a string representation of the first argument to the
service method (null if the service has no first
argument)

SuppliedArgument2
a string representation of the second argument to the
service method (null if the service has no second
argument)

SuppliedArgument3
a string representation of the third argument to the
service method (null if the service has no third
argument)

SuppliedArgument4
a string representation of the fourth argument to the
service method (null if the service has no fourth
argument)

SuppliedArgument5
a string representation of the fifth argument to the
service method (null if the service has no fifth
argument)

ReturnedArgument
a string representation of the return value of the
service method (null if the service has a void return
argument or if SuccessIndicator is false)

ExceptionDescription
the text associated with the exception thrown (null if
SuccessIndicator is true)

ExceptionID
A string containing a zero (null if SuccessIndicator is
true)

Manager.Federate.Report.ReportUpdatesSent

SYNOPSIS
(class ReportUpdatesSent reliable receive

(parameter TransportationType)
(parameter UpdateCounts)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestUpdatesSent
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report indicates the number of
updates that have been initiated by the reporting federate by
object class (i.e., it does not include updates sent by the
LRC for internal RTI needs.) If multiple physical updates
result from a single updateAttributeValues() service
invocation (e.g., if different attributes are sent reliably vs.
best effort), they will be tallied individually.
The report is tabulated according to the actual (registered)
object class of the object instances that were subjects of
updates, which may not be the same as the object classes by
which they are known to the federate.

PARAMETERS
TransportationType

a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

UpdateCounts
a comma-delimited list of pairs of the form
“<class>/<count>” where class is an object class

Management Object Model

HLA RTI 1.3-Next Generation

11-8

handle and count is the number of updates that have
been initiated by the federate for instances of the class;
only classes that have non-zero counts are listed (null
if no updates were sent)

Manager.Federate.Request

SYNOPSIS
(class Request reliable receive

...
)

DESCRIPTION
This class is the root of the hierarchy of MOM interaction
classes generated by federates in order to solicit reports of
various characteristics of LRC and federate state. This class
should not be directly subscribed or instantiated. Subclasses of
this class are indented to be generated by federates and reacted
to by LRCs. The Federate parameter inherited from
Manager.Federate specifies the LRC recipient of an interaction
instance

Manager.Federate.Request.RequestInteractionsReceived

SYNOPSIS
(class RequestInteractionsReceived reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportInteractionsReceived
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Manager.Federate.Request.RequestInteractionsSent

SYNOPSIS
(class RequestInteractionsSent reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportInteractionsSent
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Manager.Federate.Request.RequestObjectInformation

SYNOPSIS
(class RequestObjectInformation reliable receive

(parameter ObjectInstance)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit a Manager.Federate.Report.ReportObjectInformation
report from an LRC. If the object instance is not known by the
target federate, a ReportObjectInformation is sent with empty
attributes.

PARAMETERS
ObjectInstance

the name of the object instance for which a report is
solicited

Manager.Federate.Request.RequestObjectsOwned

SYNOPSIS
(class RequestObjectsOwned reliable receive)

 DESCRIPTION
Interactions of this class may be generated by a federate to
solicit a Manager.Federate.Report.ReportObjectsOwned report
from an LRC.

Manager.Federate.Request.RequestObjectsReflected

SYNOPSIS
(class RequestObjectsReflected reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit a Manager.Federate.Report.ReportObjectsReflected
report from an LRC.

 Manager.Federate.Request.RequestObjectsUpdated

SYNOPSIS
(class RequestObjectsUpdated reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit a Manager.Federate.Report.ReportObjectsUpdated report
from an LRC.

Manager.Federate.Request.RequestPublications

SYNOPSIS
(class RequestPublications reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportInteractionPublication
and Manager.Federate.Report.ReportObjectPublication reports
from an LRC. Such a request will result in a single report of the
former type, and a separate report of the later type for each
object class published by the respondent.

Manager.Federate.Request.RequestReflectionsReceived

SYNOPSIS
(class RequestReflectionsReceived reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportReflectionsReceived
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Migration Document

HLA RTI 1.3-Next Generation

11-9

Manager.Federate.Request.RequestSubscriptions

SYNOPSIS
(class RequestSubscriptions reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportInteractionSubscription
and Manager.Federate.Report.ReportObjectSubscription reports
from an LRC. Such a request will result in a single report of the
former type, and a separate report of the later type for each
object class published by the respondent.

Manager.Federate.Request.RequestUpdatesSent

SYNOPSIS
(class RequestUpdatesSent reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportUpdatesSent
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Manager.Federate.Service

SYNOPSIS
(class Service reliable receive

...
)

DESCRIPTION
This class is the root of the hierarchy of MOM interaction
classes generated by federates in order to invoke RTI
ambassador services on remote LRCs. This class should not be
directly subscribed or instantiated. Subclasses of this class are
intended to be generated by federates and reacted to by LRCs.
The Federate parameter inherited from Manager.Federate
specifies the LRC recipient of an interaction instance.
A service invocation made via a subclass of the Service
interaction class is the same as one made using the local API
interface, except that service-call reporting is not done for
remote invocations. If an exception occurs as a result of a
remote invocation, an Alert report is sent.
Instances of subclasses of the Service interaction must include
values for all parameters defined for the interaction class.
Incomplete interactions will be discarded upon receipt; an Alert
report will be sent if at least the Federate parameter was
provided.

Manager.Federate.Service.ChangeAttributeOrderType

SYNOPSIS
(class ChangeAttributeOrderType reliable receive

(parameter ObjectInstance)
(parameter AttributeList)
(parameter OrderingType)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeAttributeOrderType() service on a
remote LRC.

PARAMETERS
ObjectInstance

the name of the object instance to affected by the service
invocation

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

OrderingType
the name of the ordering service, either “receive” or
”timestamp” (case insensitive)

Manager.Federate.Service.ChangeAttributeTransportationType

SYNOPSIS
(class ChangeAttributeTransportationType reliable
receive

(parameter ObjectInstance)
(parameter AttributeList)
(parameter TransportationType)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeAttributeTransportationType()
service on a remote LRC.

PARAMETERS
ObjectInstance

the name of the object instance to be affected by the service
invocation

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

TransportationType
the name of the transportation service, either “best_effort”
or ”reliable” (case insensitive)

Manager.Federate.Service.ChangeInteractionOrderType

SYNOPSIS
(class ChangeInteractionOrderType reliable receive

(parameter InteractionClass)
(parameter OrderingType)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeInteractionOrderType() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle.

OrderingType
the name of the ordering service, either “receive” or
”timestamp” (case insensitive)

Manager.Federate.Service.ChangeInteractionTransportionType

SYNOPSIS
(class ChangeInteractionTransportationType reliable

receive
(parameter InteractionClass)
(parameter TransportationType)

Migration Document

HLA RTI 1.3-Next Generation

11-10

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeInteractionTransportationType()
service on a remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle

TransportationType
the name of the transportation service, either “best_effort”
or ”reliable” (case insensitive)

Manager.Federate.Service.DeleteObjectInstance

SYNOPSIS
(class DeleteObjectInstance reliable receive

(parameter ObjectInstance)
(parameter FederationTime)
(parameter Tag)

)

DESCRIPTION
Interactions of this class may be generated by a federate to

invoke the deleteObjectInstance() service on a remote
LRC.

PARAMETERS
ObjectInstance

the name of the object instance to be affected by the service
invocation

FederationTime
federation time parameters are encoded using the
RTI::FedTime.encode() method

Tag
a string corresponding to the user-specified field for the
service invocation

Manager.Federate.Service.DisableAsynchronousDelivery

SYNOPSIS
(class DisableAsynchronousDelivery reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the disableAsynchronousDelivery() service on a
remote LRC.

Manager.Federate.Service.DisableTimeConstrained

SYNOPSIS
(class DisableTimeConstrained reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to

invoke the disableTimeConstranied() service on a remote
LRC.

Manager.Federate.Service.DisableTimeRegulation

SYNOPSIS
(class DisableTimeRegulation reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the disableTimeRegulation() service on a remote
LRC.

Manager.Federate.Service.EnableAsynchronousDelivery

SYNOPSIS
(class EnableAsynchronousDelivery reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the enableAsynchronousDelivery() service on a
remote LRC.

Manager.Federate.Service.EnableTimeConstrained

SYNOPSIS
(class EnableTimeConstrained reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the enableTimeConstrained() service on a remote
LRC.

Manager.Federate.Service.EnableTimeRegulation

SYNOPSIS
(class EnableTimeRegulation reliable receive

(parameter FederationTime)
(parameter Lookahead)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the enableTimeRegulation() service on a remote
LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Lookahead
federation time parameters are encoded using the
RTI::FedTime.encode() method

Manager.Federate.Service.FederateRestoreComplete

SYNOPSIS
(class FederateRestoreComplete reliable receive

(parameter SuccessIndicator)
)

Migration Document

HLA RTI 1.3-Next Generation

11-11

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the federateRestoreComplete() service on a remote
LRC.

PARAMETERS
SuccessIndicator

the string “true” or “false” (case insensitive) indicating
whether the restoration of federate-managed state
succeeded (corresponding to the
federateRestoreComplete() and
federateRestoreNotComplete() services,
 respectively)

Manager.Federate.Service.FederateSaveBegun

SYNOPSIS
(class FederateSaveBegun reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the federateSaveBegun() service on a remote LRC.

Manager.Federate.Service.FederateSaveComplete

SYNOPSIS
(class FederateSaveComplete reliable receive

(parameter SuccessIndicator)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the federateSaveComplete() service on a remote
LRC.

PARAMETERS
SuccessIndicator

the string “true” or “false” (case insensitive) indicating
whether the save of federate-managed state succeeded
(corresponding to the federateSaveComplete()and
federateSaveNotComplete() services, respectively

Manager.Federate.Service.FlushQueueRequest

SYNOPSIS
(class FlushQueueRequest reliable receive

(parameter FederationTime)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the flushQueueRequest() service on a remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Manager.Federate.Service.LocalDeleteObjectInstance

SYNOPSIS
(class LocalDeleteObjectInstance reliable receive

(parameter ObjectInstance)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the localDeleteObjectInstance() service on a
remote LRC.

PARAMETERS
ObjectInstance

the name of the object instance to be affected by the service
invocation

Manager.Federate.Service.ModifyLookahead

SYNOPSIS
(class ModifyLookahead reliable receive

(parameter Lookahead)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the modifyLookahead() service on a remote LRC.

PARAMETERS
Lookahead

Federation Time parameters are encoded using the
RTI::FedTime.encode() method.

Manager.Federate.Service.NextEventRequest

SYNOPSIS
(class NextEventRequest reliable receive

(parameter FederationTime)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the nextEventRequest() service on a remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Manager.Federate.Service.NextEventRequestAvailable

SYNOPSIS
(class NextEventRequestAvailable reliable receive

(parameter FederationTime)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the nextEventRequestAvailable() service on a
remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Migration Document

HLA RTI 1.3-Next Generation

11-12

 Manager.Federate.Service.PublishInteractionClass

SYNOPSIS
(class PublishInteractionClass reliable receive

(parameter InteractionClass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the publishInteractionClass() service on a remote
LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle

Manager.Federate.Service.PublishObjectClass

SYNOPSIS
(class PublishObjectClass reliable receive

(parameter ObjectClass)
(parameter AttributeList)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the publishObjectClass() service on a remote LRC.

PARAMETERS
ObjectClass

a string-encoded integer, suitable for conversion using
atol(), representing an object class handle

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

Manager.Federate.Service.ResignFederationExecution

SYNOPSIS
(class ResignFederationExecution reliable receive

(parameter ResignAction)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the resignFederationExecution() service on a
remote LRC.

PARAMETERS
ResignAction

a text string (case insensitive), corresponding to a valid
resign action; the value can be one of the following:

“release attributes”
“delete objects”
“delete objects and release attributes”
“no action”

Manager.Federate.Service.SubscribeInteractionClass

SYNOPSIS
(class SubscribeInteractionClass reliable receive

(parameter InteractionClass)
(parameter Active)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the subscribeInteractionClass() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle

Active
a string equal to “true” or “false” (case insensitive)
indicating corresponding to an active or passive
subscription, respectively

Manager.Federate.Service.SubscribeObjectClassAttributes

SYNOPSIS
(class SubscribeObjectClassAttributes reliable

receive
(parameter ObjectClass)
(parameter AttributeList)
(parameter Active)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the subscribeObjectClassAttributes() service on
a remote LRC.

PARAMETERS
ObjectClass

a string-encoded integer, suitable for conversion using
atol(), representing an object class handle

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

Active
a string equal to “true” or “false” (case insensitive)
indicating corresponding to an active or passive
subscription, respectively

Manager.Federate.Service.SynchronizationPointAchieved

SYNOPSIS
(class SynchronizationPointAchieved reliable receive

(parameter Label)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the synchronizationPointAchieved() service on a
remote LRC.

PARAMETERS
Label

a string uniquely identifying the synchronization point

Migration Document

HLA RTI 1.3-Next Generation

11-13

 Manager.Federate.Service.TimeAdvanceRequest

SYNOPSIS
(class TimeAdvanceRequest reliable receive

(parameter FederationTime)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the timeAdvanceRequest() service on a remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Manager.Federate.Service.TimeAdvanceRequestAvailable

SYNOPSIS
(class TimeAdvanceRequestAvailable reliable receive

(parameter FederationTime)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the timeAdvanceRequestAvailable() service on a
remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI::FedTime.encode() method

Manager.Federate.Service.UnconditionalAttributeOwnershipDiv
estiture

SYNOPSIS
(class UnconditionalAttributeOwnershipDivestiture

reliable receive
(parameter ObjectInstance)
(parameter AttributeList)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the
unconditionalAttributeOwnershipDivestiture()
service on a remote LRC.

PARAMETERS
ObjectInstance

the name of the object instance to be affected by the service
invocation

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

Manager.Federate.Service.UnpublishInteractionClass

SYNOPSIS
(class UnpublishInteractionClass reliable receive

(parameter InteractionClass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to

invoke the unpublishInteractionClass() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle

Manager.Federate.Service.UnpublishObjectClass

SYNOPSIS
(class UnpublishObjectClass reliable receive

(parameter ObjectClass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unpublishObjectClass() service on a remote
LRC.

PARAMETERS
ObjectClass

a string-encoded integer, suitable for conversion using
atol(), representing an object class handle

Manager.Federate.Service.UnsubscribeInteractionClass

SYNOPSIS
(class UnsubscribeInteractionClass reliable receive

(parameter InteractionClass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unsubscribeInteractionClass() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
atol(), representing an interaction class handle

Manager.Federate.Service.UnsubscribeObjectClass

SYNOPSIS
(class UnsubscribeObjectClass reliable receive

(parameter ObjectClass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unsubscribeObjectClass() service on a remote
LRC.

PARAMETERS
ObjectClass

a string-encoded integer, suitable for conversion using
atol(), representing an object class handle

11.311.311.311.3 Objects

Manager

SYNOPSIS
(class Manager

...

Migration Document

HLA RTI 1.3-Next Generation

11-14

)

DESCRIPTION
This class is the root of the MOM object class hierarchy. It has
no attributes and is not intended to be directly subscribed or
instantiated.

 Manager.Federate

SYNOPSIS
(class Federate

(attribute FederateHandle reliable receive)
(attribute FederateType reliable receive)
(attribute FederateHost reliable receive)
(attribute RTIversion reliable receive)
(attribute FEDid reliable receive)
(attribute TimeConstrained reliable receive)
(attribute TimeRegulating reliable receive)
(attribute AsynchronousDelivery reliable receive)
(attribute FederateState reliable receive)
(attribute TimeManagerState reliable receive)
(attribute FederateTime reliable receive)
(attribute Lookahead reliable receive)
(attribute LBTS reliable receive)
(attribute MinNextEventTime reliable receive)
(attribute ROlength reliable receive)
(attribute TSOlength reliable receive)
(attribute ReflectionsReceived reliable receive)
(attribute UpdatesSent reliable receive)
(attribute InteractionsReceived reliable receive)
(attribute InteractionsSent reliable receive)
(attribute ObjectsOwned reliable receive)
(attribute ObjectsUpdated reliable receive)
(attribute ObjectsReflected reliable receive)

)

DESCRIPTION
A single instance of this object class is registered and updated
by an LRC on behalf of its federate. Periodic updates are sent
out with the frequency specified by the most recent
Manager.Federate.Adjust.SetTiming interaction received by the
LRC. By default, no periodic updates are made.

ATTRIBUTES
FederateHandle

a string-encoded integer, suitable for conversion using
atol(), representing the numeric handle of the federate

FederateType
a string identifying the category of the federate, as provided
as an argument to joinFederationExecution()

FederateHost
the hostname of the node on which the federate is
executing, as determined by the gethostname() call

RTIVersion
the string #defined as RTI_VERSION in the RTItypes.hh
file of the RTI library employed by the local federate

FEDid
the FED data-designator, as specified to
createFederationExecution()

TimeConstrained
“True” if time constraint is enabled for the federate,
otherwise “False”

TimeRegulating
“True” if time regulation is enabled for the federate,

otherwise “False”
AsynchronousDelivery

“True” if asynchronous delivery of receive-ordered events
is enabled for the federate, otherwise “False”

FederateState
a test string representing the current run state of the
federate; it will be one of the following:
“Running”
“Saving”
“Save Pending”
“Restoring”
“Restore Pending”

TimeManagerState
a text string representing the current time-advancement
state of the federate; it will be one of the following:
“Idle”
“Advance Pending”

FederateTime
a string, encoded using the getPrintableString()
method of the RTI::FedTime implementation in use by
the federate, corresponding to the current logical time of
the federate

Lookahead
a string, encoded using the getPrintableString()
method of the RTI::FedTime implementation in use by
the federate, corresponding to the length of the current
lookahead interval in effect for the federate

LBTS
a string, encoded using the getPrintableString()
method of the RTI::FedTime implementation in use by
the federate, corresponding to the current federation lower-
bound time-stamp from the perspective of the local federate

MinNextEventTime
a string, encoded using the getPrintableString()
method of the RTI::FedTime implementation in use by
the federate, corresponding to the current minimum next-
event time from the perspective of the local federate

ROlength
a string-encoded integer representing the number of events
queued for receive-ordered delivery

TSOlength
a string-encoded integer representing the number of events
currently queued for time-stamp-ordered delivery

ReflectionsReceived
a string-encoded integer representing the number of
reflections delivered to the local federate

UpdatesSent
a string-encoded integer representing the number of
updates initiated by the local federate

InteractionsReceived
a string-encoded integer representing the number of
interactions delivered to the local federate (best-effort and
reliable combined)

Migration Document

HLA RTI 1.3-Next Generation

11-15

InteractionsSent
a string-encoded integer representing the number of
interactions initiated by the local federate (best-effort and
reliable combined)

ObjectsOwned
a string-encoded integer representing the number of object
instances for which the local federate holds the privilege to
delete (all object classes combined)

ObjectsUpdated
a string-encoded integer representing the number of object
instances for which there exist one or more instance-
attributes that the local federate owns and has been advised
to update

ObjectsReflected
a string-encoded integer representing the number of object
instances for which the local federate reflects updates of at
least one attribute (best-effort and reliable combined)

Manager.Federation

SYNOPSIS
(class Federation

(attribute FederationName reliable receive)
(attribute FederatesInFederation reliable receive)
(attribute RTIversion reliable receive)
(attribute FEDid reliable receive)
(attribute LastSaveName reliable receive)
(attribute LastSaveTime reliable receive)
(attribute NextSaveName reliable receive)
(attribute NextSaveTime reliable receive)

)

DESCRIPTION
A single instance of this object class is registered and updated
by the federation (in reality, each LRC locally maintains the
state of this object for the benefit of its local federate.) The
Federation object instance is updated upon request.

ATTRIBUTES
FederationName

the unique string name of the federation, as specified to
createFederationExecution()

FederatesInFederation
a comma-delimited list of string-encoded integers suitable
for conversion using atol()

RTIversion
the string #defined as RTI_VERSION in the RTItypes.hh
file of the RTI library employed by the federation

FEDId
the FED data-designator, as specified to
createFederationExecution()

LastSaveName
the label associated with the most-recently completed
federation save (or the empty string if no saves have been
completed)

LastSaveTime
the logical time, encoded using
FedTimeFactory::getPrintableString(), associated
with the most recently completed federation save (or time
zero if no saves have been completed or the most recently
completed save was not associated with a logical time)

NextSaveName
the label associated with the currently pending federation
save (or the empty string if no save is currently pending)

NextSaveTime
the logical time, encoded using
FedTimeFactory::getPrintableString(), associated with the
currently pending federation save (or time zero if no save is pending
or the pending save is not associated with a logical time)

Migration Document

HLA RTI 1.3-Next Generation

12-1

12. Migration Document
12.112.112.112.1 Introduction to Migrating RTI 1.3v6 Federates to RTI 1.3-NG

This section is intended as a “quick start guide” to making the transition from RTI 1.3v6 to 1.3-
NG as smooth as possible by pointing out the most commonly encountered differences and
pitfalls. It is not intended to introduce features and functionality exclusive to RTI version 1.3-
NG, nor is it intended to be an exhaustive list of differences between RTI 1.3v6 and RTI 1.3-NG.

12.212.212.212.2 Management Object Model

12.2.1. General notes

The Manager.Federate.Service interaction ChangeAttributeTransportType was corrected to be
ChangeAttributeTransportationType.
The Manager.Federate.Service interaction ChangeInteractionTransportType was corrected to be
ChangeInteractionTransportationType.
The Manager.Federate.Service interactions RegisterFederationSynchronizationPoint,
RequestFederationRestore and RequestFederationSave were removed because they did not appear in
the interface specification.
The Manager.Federate.Service interactions FederateRestoreComplete, FederateSaveBegun and
FederateSaveComplete currently cannot be used without throwing an exception.
12.2.2. Manager.Federate.Adjust.ModifyAttributeState

An attribute must be unowned in order for a federate to assume ownership via this service.
12.2.3. Manager.Federate.Adjust.SetExceptionLogging

Now, only exceptions are logged to the file. Its default state is off.
12.2.4. Manager.Federate.Report.Alert

This is sent only when exceptions occur.
AlertSeverity has only three possible values instead of five. These values are now strings wheich will
be one of the following:

“RTI exception”

“RTI internal error”

“Federate internal error”

AlertID now represents a count which is incremented after each alert is sent.
12.2.5. Manager.Federate.Report.ReportObjectSubscription

The Active field will now contain "True" or "False" instead of "Active" or "Passive", respectively.

12.2.6. Manager.Federate.Report.ReportServiceInvocation

All parameters will be included in each ReportServiceInvocation, not just those that are relevant.

Migration Document

HLA RTI 1.3-Next Generation

12-2

All RTI::FedTime types are now represented as the string returned by
RTI::FedTime.getPrintableString()
All RTI::Region types are now represented as the memory address of the region instance.
The ExceptionID parameter will always contain a zero when SuccessIndicator is false, or null when
SuccessIndicator is true.
Note: New to v1.1: A federate will now report an invocation to the joinFederationExecution service if the
reporting federate's RID file has the RID parameter FederationSection.MOM.EnableServiceReporting set to
Yes."

12.2.7. Manager.Federate object

No initial update of this object is sent out automatically; the user must first request an attribute update.
FederateState currently can never have the values of save pending, restoring or restore pending
because no object updates can be sent during those states.

12.312.312.312.3 RTI Initialization Data (Extracted from the RTI.rid file)
12.3.1. Introduction to the RTI 1.3-NG RTI Initialization Date file

This file contains configuration parameters that control the operation of the RTI software. All
parameters have a default setting that is used in the event that a parameter value is not specified
in the RID file or a RID file is not specified. If a RID file is not present, RTI 1.3-NG will use the
directory from which the RtiExec was launched as the current directory for launch of the
FedExec and for saving information during a save or restore invocation. In addition, the user
should expect to see multiple warning messages. Unless a minimum RTI.rid file is used,
directing the RTI to turn off warnings, the user can expect to see multiple warning messages
printed to the screen. These messages will be in the following format:

"<File>", line <x>: <RID param> not found in RID, using default value <RID value>.

Example Warning Message:

"G:\Release_Views\ng_v1.1_dev_nt_vc\rting\rti\priv\pkg\interactionMgt\priv\src\RtiInteraction
ManagerIncoming.cpp", line 174: Valid value for Advisories.
InteractionRelevanceAdvisorySwitchDefault not found in RID. Valid values are [Enabled |
Disabled]. Using value of `ENABLED'
The following snippet would represent the minimum RTI.rid file that would use default settings
without displaying default parameter warnings to the screen:

(RTIdebug
 (WarningMessages
 (ViewPackageSet 0xfffffffffff7ffff)
)
) ;; End of RTI_Debug

Migration Document

HLA RTI 1.3-Next Generation

12-3

12.3.2. File Location

The RTI-NG software looks for the environment variable, RTI_RID_FILE, which defines the name
and location of the RID file to be used by the application. The file location may be absolute or relative
using the appropriate convention for the particular operating system. The file name is not required to
have a special name or prefix, it only needs to be readable by the application and provide the correct
syntax.
If the RTI_RID_FILE environment variable is not set, the rtiexec process will attempt to open a file
named "RTI.rid" in the directory from which the application was launched.

12.3.3. File Format

The format used for the RID file has several rules related to valid parsing of the file. The first rule is
that any text to the right of the comment token, (two semi-colons “;;”), is ignored by the parser. The
second rule is that the left and right parentheses are used for scoping, and must always be used in
matching pairs.
Within a pair of parentheses, there can be either the scope name or a parameter name and value pair.
The scope name is used to organize parameters that are conceptually related and to ensure uniqueness
(in case a parameter name is used multiple times within different scopes). If a parameter name is not
unique, only the last value will be used for the scoping. The parameter name is case insensitive. The
value is parsed as a character string and subsequently interpreted according to the particular parameter
type (e.g., integer, floating point, string).

12.3.4. File Parameter Scoping

Each RID parameter is identified by a scope name in which the scoping is broken into three major
categories according to the granularity of the internal RTI components. The RTI-NG instantiates
components when an RTI process is initially started (the first create or join), when a federation comes
into existence within the process (first create or join of a new federation), and when a particular
federate joins a federation. These scope names are defined below.
 ProcessSection - process level component parameters
 FederationSection - federation level component parameters
 FederateSection - federate level component parameters

It is possible that a RID file used by a particular application will need to support multiple federations
and federates within a single process using different RID parameter values for each federation or
federate. This RID structure can support this situation by creating a scope within the federation or
federate section with the scope name the same as the name of the federation or name of the federate,
respectively.
As an example, assume that an application needs to support two different federations named
FederationA and FederationB. The RID parameter for the multicast base address for FederationB
needs to be different from the address of all other federations. An example RID is shown below where
the BaseAddress used for FederationB is "224.100.0.1" and for all other federations the value is
"224.2.0.1".
 (FederationSection
 ...
 (BaseAddress 224.2.0.1)

Migration Document

HLA RTI 1.3-Next Generation

12-4

 ...
 (FederationB
 ...
 (BaseAddress 224.100.0.1)
 ...
)

)

12.3.5. Parameter Definition
Each parameter contained in the RID file provides a description of the effect that the parameter value
has on the operation of the RTI. The RANGE defines the valid parameter values and the DEFAULT
VALUE defines the default value. As previously mentioned, if the parameter and value is not specified
within the RID file the default value will be used by the RTI.

(RTI
 ;; The RTI scope serves as a namespace for the RID user parameters. No
 ;; parameter entries should be made at this level.

 (ProcessSection
 ;; Entries in this section apply to the process level components.

 (RtiExecutive
 ;; The RTI Executive is a logically centralized process that is used as a
 ;; network wide resource manager to handle such items as the uniqueness of
 ;; federation names. It is logically centralized since redundant processes
 ;; can be used for fault tolerance (although this feature is currently not
 ;; supported). The parameters associated with the RTI Executive control
 ;; how the process is found on the network.

 ;; PARAMETER: ProcessSection.RtiExecutive.RtiExecutiveEndpoint
 ;; DESCRIPTION: The RTI Executive endpoint defines the network address and
 ;; port number used by the RTI Executive process (and hence the RTI Naming
 ;; Service). The network address can be a hostname or an IP address. The
 ;; endpoint is only necessary when the multicast discovery mechanism is not
 ;; used and the endpoint must match the value provided when the RTI Executive
 ;; process is started.
 ;; RANGE: A valid hostname or IP address followed by a colon and then the
 ;; port number.
 ;; DEFAULT VALUE: None, will use multicast discovery mechanism.
 ;;
 ;;;; (RtiExecutiveEndpoint hostname:port)

 ;; PARAMETER: ProcessSection.RtiExecutive.
 ;; RtiExecutiveMulticastDiscoveryEndpoint

Migration Document

HLA RTI 1.3-Next Generation

12-5

 ;; DESCRIPTION: The RTI Executive discovery parameter defines the multicast
 ;; address and port number used for the multicast discovery protocol to find
 ;; the RTI Naming Service which is located in the RTI Executive process
 ;; The naming service will then enable the application to locate distributed
 ;; RTI components (e.g., RTI Executive).
 ;; RANGE: A valid multicast IP address (or hostname) followed by a colon and
 ;; then the port number.
 ;; DEFAULT VALUE: 224.9.9.2:22605
 ;;
 ;;;; (RtiExecutiveMulticastDiscoveryEndpoint 224.9.9.2:22605)

 ;; PARAMETER: ProcessSection.RtiExecutive.NumberOfAttemptsToFindRtiExecutive
 ;; DESCRIPTION: The NumberAttemptsToFindRtiExecutive parameter is used to
 ;; control how many attempts the application should use to locate the RTI
 ;; Naming Service using the multicast discovery mechanism.
 ;; RANGE: An integer value greater than zero.
 ;; DEFAULT VALUE: 10
 ;;
 ;;;; (NumberOfAttemptsToFindRtiExecutive 10)

 ;; PARAMETER: ProcessSection.RtiExecutive.TimeToWaitAfterEachAttemptInSeconds
 ;; DESCRIPTION: The TimeToWaitAfterEachAttemptInSeconds parameter is used to
 ;; control how long the application should wait between attempts to find the
 ;; RTI Executive using the multicast discovery mechanism.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT VALUE: 2.0
 ;;
 ;;;; (TimeToWaitAfterEachAttemptInSeconds 2.0)
) ;; End of ProcessSection.RtiExecutive

 (Networking
 ;; The Networking section is used to define the communication configuration
 ;; information associated with all of the RTI components within the
 ;; application using this RID file.

 ;; PARAMETER: ProcessSection.Networking.FederateEndpoint
 ;; DESCRIPTION: The Networking endpoint defines the network address and port
 ;; number used by the federate application process using this RID file. The
 ;; network address can be a hostname or an IP address. The federate endpoint
 ;; is used by other distributed RTI components to communicate with internal
 ;; modules within this application. Typically the federate endpoint does not

Migration Document

HLA RTI 1.3-Next Generation

12-6

 ;; need to be defined unless the computer has multiple network interfaces.
 ;; If an environmental variable named RTI_FEDERATE_ENDPOINT is found, its
 ;; value will be used in favor of what is specified here.
 ;; RANGE: A valid hostname or IP address followed by a colon and then the
 ;; port number.
 ;; DEFAULT VALUE: The default network card and the port.
 ;;
 ;;;; (FederateEndpoint hostname:port)

 (MulticastOptions
 ;; The networking multicast options define the parameters that control the
 ;; behavior of UDP communication within the RTI that is used for Best Effort
 ;; transport.

 ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Interface
 ;; DESCRIPTION: The Interface is used to specify which ethernet
 ;; interface shall be used to send and receive multicast traffic. On
 ;; most systems the possible interfaces can be listed with the netstat
 ;; command). If no interface is specified, the default is used.
 ;; NOTE: This parameter does not effect multicast name service discovery.

 ;; DEFAULT VALUE: None.
 ;;
 ;;;; (Interface "eth0")

 (Fragmentation
 ;; The UDP communication protocol (used for Best Effort transport) does
 ;; not fragment and reassemble data. For messages larger than the UDP
 ;; fragmentation size the RTI must fragment the message into smaller
 ;; packets on the send side and then reassemble the packets on the
 ;; receiver side.

 ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.FragmentSize
 ;; DESCRIPTION: The FragmentSize is used to define the maximum number of
 ;; bytes that can be used as the payload in a UDP packet. Different
 ;; networks may be capable of supporting different UDP Maximum Transfer
 ;; Unit (MTU) values.
 ;; RANGE: An integer greater than zero representing the number of bytes.
 ;; DEFAULT VALUE: 62000
 ;;
 ;;;; (FragmentSize 62000)

Migration Document

HLA RTI 1.3-Next Generation

12-7

 ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.ReassemblyTimerIntervalInSeconds
 ;; DESCRIPTION: TheReassmeblyTimerIntervalInSeconds parameter is used to control how long
 ;; control how long the receiver will wait to receive all of the fragments
 ;; that make up a single message. Since UDP is not a reliable communication
 ;; protocol the fragments can be lost and the receiver needs to know how long
 ;; to wait before discarding incomplete fragments. For performance reasons
 ;; the RTI does not create a timer for each fragment set, instead a common
 ;; timer is used and each incomplete fragment set is incremented and removed
 ;; after MaxTimeouts.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT VALUE: 1.0
 ;;
 ;;;; (ReassemblyTimerIntervalInSeconds 1.0)

 ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.MaxTimeouts
 ;; DESCRIPTION: The MaxTimeouts parameter is used to control how long the
 ;; receiver will wait to receive all of the fragments that make up a
 ;; single message. Since UDP is not a reliable communication protocol the
 ;; fragments can be lost and the receiver needs to know how long to wait
 ;; before discarding incomplete fragments. For performance reasons the RTI
 ;; does not create a timer for each fragment set, instead a common timer is
 ;; used and each incomplete fragment set is incremented and removed after
 ;; MaxTimeouts.
 ;; RANGE: An integer value greater than zero.
 ;; DEFAULT VALUE: 3
 ;;
 ;;;; (MaxTimeouts 3)
) ;; End of ProcessSection.Networking.MulticastOptions.Fragmentation
) ;; End of ProcessSection.Networking.MulticastOptions
) ;; End of ProcessSection.Networking

 (ProcessModel
 ;; The process model controls the mechanism used by the RTI to obtain
 ;; processing cycles and support callbacks to the federate during the tick
 ;; call.

 ;; PARAMETER: ProcessSection.ProcessModel.StrategyToUse
 ;; DESCRIPTION: There are currently two process model strategies that are
 ;; supported by the RTI; (1) polling process model and (2) asynchronous I/O
 ;; process model. The polling process model uses a single thread of

Migration Document

HLA RTI 1.3-Next Generation

12-8

 ;; execution shared between the RTI and the federate. Only when the federate
 ;; calls tick is the RTI able to perform work. This strategy can starve the
 ;; RTI if tick is not called appropriately. The asynchronous I/O process
 ;; model uses an internal thread within the RTI to avoid starvation. This
 ;; thread will periodically wake up and determine if it can perform any
 ;; internal RTI work. In the asynchronous I/O strategy the federate only
 ;; needs to invoke tick when it is prepared to handle callbacks.
 ;; RANGE: An enumeration value {Polling, AsynchronousIO}.
 ;; DEFAULT VALUE: AsynchronousIO

 ;;;; (StrategyToUse AsynchronousIO)
) ;; End of ProcessSection.ProcessModel

 (Scheduler
 ;; The Scheduler section contains parameters associated with the behavior of
 ;; the tick service.

 ;; PARAMETER: ProcessSection.Scheduler.SingleCallbackPerTick
 ;; DESCRIPTION: When using the tick service without the minimum and maximum
 ;; time arguments the RTI can be directed to return a single callback or
 ;; provide all available callbacks. Using this service with a setting of No
 ;; indicates to the RTI that all available callbacks should be delivered to
 ;; the federate in a single tick() call.
 ;; RANGE: An enumeration value {Yes, No}.
 ;; DEFAULT VALUE: No.
 ;;
 ;;;; (SingleCallbackPerTick No)

) ;; End of ProcessSection.Scheduler
) ;; End of ProcessSection

 (FederationSection
 ;; Entries in this section apply to the federation level components.

 (FederationExecutive
 ;; The FederationExecutive section contains parameters related to the
 ;; federation executive process that is launched when a federation is
 ;; created.

 ;; PARAMETER: FederationSection.FederationExecutive.FederationExecutiveEndpoint
 ;; DESCRIPTION: The Federation Executive endpoint defines the network address

Migration Document

HLA RTI 1.3-Next Generation

12-9

 ;; and port number used by the Federation Executive process. The network
 ;; address can be a hostname or an IP address. Typically, the endpoint only
 ;; needs to be defined when the Federation Executive needs to use the
 ;; non-default network interface, or when the Federation Executive (i.e.,
 ;; fedex) is to run on a different host than the RTI Executive.
 ;; RANGE: A valid hostname or IP address followed by a colon and then the
 ;; port number.
 ;; DEFAULT VALUE: Will use same default hostname on the host where the RTI
 ;; Executive is running, with a system generated port number.
 ;;
 ;;;; (FederationExecutiveEndpoint hostname:port)

 ;; PARAMETER: FederationSection.FederationExecutive.FilenameOfFederationExecutiveExecutable
 ;; DESCRIPTION: This parameter defines the relative or absolute path to the
 ;; Federation Executive executable (i.e., fedex). The relative path is
 ;; defined relative to the location of the RTI Executive.
 ;; RANGE: A valid path to the fedex executable.
 ;; DEFAULT VALUE: fedex
 ;;
 ;;;; (FilenameOfFederationExecutiveExecutable fedex)

 ;; PARAMETER:
FederationSection.FederationExecutive.TimeToWaitBeforeCommunicatingWithFederationExecutiveInSeconds
 ;; DESCRIPTION: This parameter is used to allow the federate application to
 ;; wait a period of time before trying to connect to the Federation Executive
 ;; process. A small delay may be necessary when the Federation Executive is
 ;; being created.
 ;; RANGE: An integer greater than or equal to zero.
 ;; DEFAULT VALUE: 3
 ;;
 ;;;; (TimeToWaitBeforeCommunicatingWithFederationExecutiveInSeconds 3)

 ;; PARAMETER: FederationSection.FederationExecutive.NumberOfAttemptsToFindFederationExecutive
 ;; DESCRIPTION: The federate application may attempt to connect to the
 ;; Federation Executive process multiple times.
 ;; RANGE: An integer number greater than zero.
 ;; DEFAULT VALUE: 10
 ;;
 ;;;; (NumberOfAttemptsToFindFederationExecutive 10)

 ;; PARAMETER: FederationSection.FederationExecutive.TimeToWaitAfterEachAttemptInSeconds
 ;; DESCRIPTION: When the federate application fails to initially connect to

Migration Document

HLA RTI 1.3-Next Generation

12-10

 ;; the Federation Executive process it can wait a fixed period of time.
 ;; RANGE: A floating point number greater than or equal to zero.
 ;; DEFAULT VALUE: 2.0
 ;;
 ;;;; (TimeToWaitAfterEachAttemptInSeconds 2.0)

 ;; PARAMETER: FederationSection.FederationExecutive.FilenameToRedirectStdout
 ;; DESCRIPTION: This parameter can be used to direct standard output to a
 ;; file, rather than the default output device.
 ;; RANGE: A valid filename.
 ;; DEFAULT VALUE: None, will use the standard output device.
 ;;
 ;;;; (FilenameToRedirectStdout fedex.stdout)

 ;; PARAMETER: FederationSection.FederationExecutive.FilenameToRedirectStderr
 ;; DESCRIPTION: This parameter can be used to direct standard error to a
 ;; file, rather than the default error device.
 ;; RANGE: A valid filename.
 ;; DEFAULT VALUE: None, will use the standard error device.
 ;;
 ;;;; (FilenameToRedirectStderr fedex.stderr)

 ;; PARAMETER: FederationSection.FederationExecutive.DirectoryForSaveAndRestoreFiles
 ;; DESCRIPTION: This parameter provides the pathname to the directory used
 ;; when producing new saved files or processing existing saved files.
 ;; RANGE: A valid directory pathname.
 ;; DEFAULT_VALUE: .
 ;;
 ;;;; (DirectoryForSaveAndRestoreFiles .)

) ;; End of FederationSection.FederationExecutive

 ;; PARAMETER: FederationSection.TimeIntervalToCheckForUnresponsiveFederationInSeconds
 ;; DESCRIPTION: The RTI Executive employs a simple heartbeat model as a means
 ;; to clear the name of an unresponsive federation from the RTI Naming
 ;; Service so that the name can be reused. This parameter sets the time
 ;; interval in seconds at which the RTI Executive checks to see whether it has
 ;; heard from the Federation Executive.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT_VALUE: 60.0
 ;;

Migration Document

HLA RTI 1.3-Next Generation

12-11

 ;;;; (TimeIntervalToCheckForUnresponsiveFederationInSeconds 60.0)

 ;; PARAMETER: FederationSection.TimeToWaitBeforeDeclaringFederationDeadInSeconds
 ;; DESCRIPTION: The RTI Executive employs a simple heartbeat model as a means
 ;; to clear the name of an unresponsive federation from the RTI Naming Service
 ;; so that the name can be reused. This parameter sets the time to wait in
 ;; seconds before the RTI Executive removes the name of a federation from
 ;; which it has not received a ping reply.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT_VALUE: 90.0
 ;;
 ;;;; (TimeToWaitBeforeDeclaringFederationDeadInSeconds 90.0)

 (FederationInterconnect
 ;; The FederationInterconnect section contains parameters associated with the
 ;; configuration of reliable transport configuration channels.

 ;; PARAMETER: FederationSection.FederationInterconnect.StrategyToUse
 ;; DESCRIPTION: The interconnection of RTI nodes for reliable traffic can use
 ;; either a CollocatedEventChannel or a CentralizedEventChannel strategy. The
 ;; CollocatedEventChannel strategy allows each RTI node (i.e., each federate
 ;; application) to contain a "TCP exploder" that is connected to every other
 ;; node. The CentralizedEventChannel strategy uses a single node to receive
 ;; all of the federation reliable traffic and transmit this data to the
 ;; interested receivers. The CollocatedEventChannel adds some processing
 ;; requirements to each node to perform the TCP writes, but it avoids latency
 ;; when going through a centralized node which has the processing burden of
 ;; the entire federation.
 ;; RANGE: An enumeration value {CollocatedEventChannels,
 ;; CentralizedEventChannel}
 ;; DEFAULT VALUE: CollocatedEventChannels
 ;;
 ;;;; (StrategyToUse CollocatedEventChannels)

 ;; PARAMETER: FederationSection.FederationInterconnect.PingIntervalInSeconds
 ;; DESCRIPTION: Controls the rate at which the interconnect sends ping
 ;; requests to each node. This is used to determine the “wellness” of the
 ;; nodes.
 ;; RANGE: A real number greater than 1.0 or Off
 ;; DEFAULT VALUE: 5.0
 ;; Values

Migration Document

HLA RTI 1.3-Next Generation

12-12

 ;;
 ;;;; (PingIntervalInSeconds 5.0)
) ;; End of FederationSection.FederationInterconnect

 (Networking
 ;; This section contains parameters related to networking information related
 ;; to the federation components.

 (BundlingOptions
 ;; Federation data can be bundled by the sender in order to improve
 ;; throughput, at the expense of latency.

 (UDP
 ;; RTI best effort transport uses User Datagram Protocol (UDP).

 ;; PARAMETER: FederationSection.Networking.BundlingOptions.UDP.MaxTimeBeforeSendInSeconds
 ;; DESCRIPTION: This parameter is the maximum amount of time that the RTI
 ;; will wait before the RTI flushes the data. If set to 0, bundling will
 ;; be disabled.
 ;; RANGE: A floating point value greater than or equal to zero.
 ;; DEFAULT VALUE: 0.005
 ;;
 ;;;; (MaxTimeBeforeSendInSeconds 0.005)

 ;; PARAMETER: FederationSection.Networking.BundlingOptions.UDP.MaxBytesBeforeSend
 ;; DESCRIPTION: This parameter is the maximum number of bytes that will be
 ;; bundled before the RTI flushes the data.
 ;; RANGE: An integer value greater than or equal to zero.
 ;; DEFAULT VALUE: 63000
 ;;
 ;;;; (MaxBytesBeforeSend 63000)

) ;; End of FederationSection.Networking.BundlingOptions.UDP

 (TCP
 ;; RTI Reliable transport uses Transfer Control Protocol (TCP).

 ;; PARAMETER: FederationSection.Networking.BundlingOptions.TCP.MaxTimeBeforeSendInSeconds
 ;; DESCRIPTION: This parameter is the maximum amount of time that the RTI
 ;; will wait before the RTI flushes the data. If set to 0, bundling will
 ;; be disabled.

Migration Document

HLA RTI 1.3-Next Generation

12-13

 ;; RANGE: A floating point value greater than or equal to zero.
 ;; DEFAULT VALUE: 0.005
 ;;
 ;;;; (MaxTimeBeforeSendInSeconds 0.005)

 ;; PARAMETER: FederationSection.Networking.BundlingOptions.TCP.MaxBytesBeforeSend
 ;; DESCRIPTION: This parameter is the maximum number of bytes that will be
 ;; bundled before the RTI flushes the data.
 ;; RANGE: An integer value greater than or equal to zero.
 ;; DEFAULT VALUE: 63000
 ;;
 ;;;; (MaxBytesBeforeSend 63000)

) ;; End of FederationSection.Networking.BundlingOptions.TCP

) ;; End of FederationSection.Networking.BundlingOptions

 (MulticastOptions
 ;; The networking multicast options define the parameters that control the
 ;; behavior of UDP communication within the RTI that is used for Best Effort
 ;; transport.

 ;; PARAMETER: FederationSection.Networking.MulticastOptions.PortNumber
 ;; DESCRIPTION: The port number of the socket used for sending multicast
 ;; traffic in support of Best Effort transport.
 ;; RANGE: An integer value representing a valid port number, or
 ;; the string RTI-selected to have the RTI select an available port
 ;; DEFAULT VALUE: RTI-selected
 ;;
 ;;;; (PortNumber 2000)

 ;; PARAMETER: FederationSection.Networking.MulticastOptions.BaseAddress
 ;; DESCRIPTION: The base network address (IP four decimal address or
 ;; hostname) for sending multicast traffic. The Best Effort traffic will be
 ;; segmented into different multicast addresses when using the Data
 ;; Distribution Management (DDM) services. The maximum number of multicast
 ;; addresses used by the RTI will be defined by the available addresses
 ;; between the MaxAddress and the BaseAddress, although the actual number
 ;; used may be far less (see DDM parameters).
 ;; RANGE: Any valid IP multicast address, e.g., from 224.0.0.3 to
 ;; 239.255.255.255

Migration Document

HLA RTI 1.3-Next Generation

12-14

 ;; DEFAULT VALUE: 224.1.0.0
 ;;
 ;;;; (BaseAddress 224.1.0.0)

 ;; PARAMETER: FederationSection.Networking.MulticastOptions.MaxAddress
 ;; DESCRIPTION: The maximum network address (IP four decimal address or
 ;; hostname) for sending multicast traffic. The Best Effort traffic will be
 ;; segmented into different multicast addresses when using the Distribution
 ;; Management (DDM) services. The maximum number of multicast addresses
 ;; used by the RTI will be defined by the available addresses between the
 ;; MaxAddress and the BaseAddress, although the actual number used may be
 ;; far less (see DDM parameters).
 ;; RANGE: Any valid IP multicast address greater than or equal to the base
 ;; address.
 ;; DEFAULT VALUE: 239.255.255.255
 ;;
 ;;;; (MaxAddress 239.255.255.255)

 ;; PARAMETER: FederationSection.Networking.MulticastOptions.TimeToLive
 ;; DESCRIPTION: To prevent infinite routing loops, UDP multicast packets are
 ;; marked with a counter that is decremented each time a router sees the
 ;; packet. This counter is called TTL (Time To Live). Routers will not
 ;; pass any packets with a TTL less than 2. Consequently, to pass UDP
 ;; multicast between LAN's, not only must the routers be properly
 ;; configured, but the TTL must be at least 2 as well.
 ;; RANGE: An integer from 0 to 255
 ;; DEFAULT VALUE: 1
 ;;
 ;;;; (TimeToLive 1)
) ;; End of FederationSection.Networking.MulticastOptions
) ;; End of FederationSection.Networking

 (Advisories
 ;; The advisories section contains parameters related to the RTI advisory
 ;; mechanisms. The scope advisories that inform the federate when certain
 ;; attributes owned by other federates are in or out of scope with respect to
 ;; the federate's subscriptions. The relevance advisories inform the
 ;; publishing federate whether other federates in the federation are
 ;; interested in particular object or interaction classes and particular
 ;; object attribute instances.

Migration Document

HLA RTI 1.3-Next Generation

12-15

 ;; PARAMETER: FederationSection.Advisories.ClassRelevanceAdvisorySwitchDefault
 ;; DESCRIPTION: This parameter controls the switch to define if the object
 ;; class relevance advisory mechanism is enabled when the federate begins.
 ;; The class relevance advisories will inform the federate if there exists
 ;; any other federate within the federation that is subscribed to a
 ;; particular class. The relevance advisories could be beneficial in large
 ;; scale federations, although there may be significant performance cost in
 ;; calculating these advisories.
 ;; RANGE: An enumeration value {Enabled, Disabled}
 ;; DEFAULT VALUE: Enabled
 ;;
 ;;;; (ClassRelevanceAdvisorySwitchDefault Enabled)

 ;; PARAMETER: FederationSection.Advisories.AttributeRelevanceAdvisorySwitchDefault
 ;; DESCRIPTION: This parameter controls the switch to define if the object
 ;; attribute relevance advisory mechanism is enabled when the federate
 ;; begins. The attribute relevance advisories will inform the federate if
 ;; there exists any other federate within the federation that is subscribed
 ;; such that they would receive updates from a particular attribute instance.
 ;; The relevance advisories could be beneficial in large scale federations,
 ;; although there may be significant performance cost in calculating these
 ;; advisories.
 ;; RANGE: An enumeration value {Enabled, Disabled}
 ;; DEFAULT VALUE: Disabled
 ;;
 ;;;; (AttributeRelevanceAdvisorySwitchDefault Disabled)

 ;; PARAMETER: FederationSection.Advisories.AttributeScopeAdvisorySwitchDefault
 ;; DESCRIPTION: This parameter controls the switch to define if the object
 ;; attribute scope advisory mechanism is enabled when the federate begins.
 ;; The attribute scope advisories will inform the federate if a particular
 ;; attribute instance being updated from another federate matches the
 ;; federates subscriptions. If the attribute is in scope the federate will
 ;; receive any updates, and if the attribute is out of scope any updates will
 ;; not be reflected.
 ;; RANGE: An enumeration value {Enabled, Disabled}
 ;; DEFAULT VALUE: Disabled
 ;;
 ;;;; (AttributeScopeAdvisorySwitchDefault Disabled)

 ;; PARAMETER: FederationSection.Advisories.InteractionRelevanceAdvisorySwitchDefault

Migration Document

HLA RTI 1.3-Next Generation

12-16

 ;; DESCRIPTION: This parameter controls the switch to define if the
 ;; interaction relevance advisory mechanism is enabled when the federate
 ;; begins. The interaction relevance advisories will inform the federate if
 ;; there exists any other federate within the federation that is subscribed
 ;; to a particular interaction class. The relevance advisories could be
 ;; beneficial in large scale federations, although there may be significant
 ;; performance cost in calculating these advisories.
 ;; RANGE: An enumeration value {Enabled, Disabled}
 ;; DEFAULT VALUE: Enabled
 ;;
 ;;;; (InteractionRelevanceAdvisorySwitchDefault Enabled)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryInteractionClassHeartbeatInSeconds
 ;; DESCRIPTION: The relevance advisory interaction class heartbeat parameter
 ;; controls how often each federate will broadcast interaction subscription
 ;; information to the other RTI nodes in order to calculate if there is a
 ;; federate that has an interest in a particular interaction class. The
 ;; heartbeat mechanism is used as a more scalable approach than requiring
 ;; each federate to buffer global subscription knowledge for the entire
 ;; federation. If interaction relevance advisories are not used within the
 ;; federation then the value of Off can be used. If the interaction
 ;; relevance advisories are being used the heartbeat rate should be the
 ;; maximum delay in receiving the interaction advisory that is tolerable.
 ;; RANGE: A floating point value greater than zero, or an enumeration value
 ;; of Off.
 ;; DEFAULT VALUE: 10.0
 ;;
 ;;;; (RelevanceAdvisoryInteractionClassHeartbeatInSeconds 10.0)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryInteractionClassTimeoutInSeconds
 ;; DESCRIPTION: The relevance advisory interaction timeout parameter defines
 ;; how long a federate will wait to receive a relevance interaction
 ;; subscription heartbeat that matches a particular interaction class.
 ;; A match is necessary to inform the federate that there is
 ;; interest. The heartbeat mechanism is used as a more scalable approach
 ;; than requiring each federate to buffer global subscription knowledge for
 ;; the entire federation. If interaction relevance advisories are not used
 ;; within the federation then the value of Off can be used.
 ;; If the relevance advisories are being used the timeout rate should be
 ;; at least twice that of the heartbeat rate.
 ;; RANGE: A floating point value greater than zero, or an enumeration value

Migration Document

HLA RTI 1.3-Next Generation

12-17

 ;; of Off.
 ;; DEFAULT VALUE: 30.0
 ;;
 ;;;; (RelevanceAdvisoryInteractionClassTimeoutInSeconds 30.0)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryObjectClassHeartbeatInSeconds
 ;; DESCRIPTION: The relevance advisory object class heartbeat parameter
 ;; controls how often each federate will broadcast object class subscription
 ;; information to the other RTI nodes in order to calculate if there is a
 ;; federate that has an interest in a particular object class. The
 ;; heartbeat mechanism is used as a more scalable approach than requiring
 ;; each federate to buffer global subscription knowledge for the entire
 ;; federation. If object class relevance advisories are not used within the
 ;; federation then the value of Off can be used. If the object class
 ;; relevance advisories are being used the heartbeat rate should be the
 ;; maximum delay in receiving the advisory that is tolerable.
 ;; RANGE: A floating point value greater than zero, or an enumeration value
 ;; of Off.
 ;; DEFAULT VALUE: 10.0
 ;;
 ;;;; (RelevanceAdvisoryObjectClassHeartbeatInSeconds 10.0)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryObjectClassTimeoutInSeconds
 ;; DESCRIPTION: The relevance advisory object class timeout parameter
 ;; defines how long a federate will wait to receive a relevance object
 ;; class subscription heartbeat that matches a particular object class.
 ;; A match is necessary to inform the federate that there is
 ;; interest. The heartbeat mechanism is used as a more scalable approach
 ;; than requiring each federate to buffer global subscription knowledge for
 ;; the entire federation. If object class relevance advisories are not used
 ;; within the federation then the value of Off can be used.
 ;; If the relevance advisories are being used the timeout rate should be at
 ;; least twice that of the heartbeat rate.
 ;; RANGE: A floating point value greater than zero, or an enumeration value
 ;; of Off.
 ;; DEFAULT VALUE: 30.0
 ;;
 ;;;; (RelevanceAdvisoryObjectClassTimeoutInSeconds 30.0)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryAttributeInstanceHeartbeatInSeconds
 ;; DESCRIPTION: The relevance advisory attribute instance heartbeat parameter

Migration Document

HLA RTI 1.3-Next Generation

12-18

 ;; controls how often each federate will broadcast attribute instance
 ;; subscription information to the other RTI nodes in order to calculate if
 ;; there is a federate that has an interest in a particular attribute
 ;; instance. The heartbeat mechanism is used as a more scalable approach
 ;; than requiring each federate to buffer global subscription knowledge for
 ;; the entire federation. If attribute instance relevance advisories
 ;; are not used within the federation then the value of Off can be used.
 ;; If the attribute instance relevance advisories are being used the
 ;; heartbeat rate should be the maximum delay in receiving the advisory that
 ;; is tolerable.
 ;; RANGE: A floating point value greater than zero, or an enumeration value
 ;; of Off.
 ;; DEFAULT VALUE: 10.0
 ;;
 ;;;; (RelevanceAdvisoryAttributeInstanceHeartbeatInSeconds 10.0)

 ;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryAttributeInstanceTimeoutInSeconds
 ;; DESCRIPTION: The relevance advisory attribute instance timeout parameter
 ;; defines how long a federate will wait to receive a relevance attribute
 ;; instance subscription heartbeat that matches a particular attribute
 ;; instance. A match is necessary to inform the federate that there is
 ;; interest. The heartbeat mechanism is used as a more scalable approach
 ;; than requiring each federate to buffer global subscription knowledge for
 ;; the entire federation. If attribute instance relevance advisories
 ;; are not used within the federation then the value of Off can be used.
 ;; If the relevance advisories are being used the timeout rate should be at
 ;; least twice that of the heartbeat rate.
 ;; RANGE: A floating point value greater than zero, or an enumeration value
 ;; of Off.
 ;; DEFAULT VALUE: 30.0
 ;;
 ;;;; (RelevanceAdvisoryAttributeInstanceTimeoutInSeconds 30.0)

 ;; PARAMETER: FederationSection.Advisories.ProvideAttributeValueUpdateDelayTimeInSeconds
 ;; DESCRIPTION: The provide attribute value update delay time parameter
 ;; defines the amount of time that a federate will "hold onto" a
 ;; object-instance-level provideAttributeValueUpdate command before
 ;; delivering it to the federate ambassador. While the command is being
 ;; held, if identical provideAttributeValueUpdate commands are generated,
 ;; then only one is eventually delivered. This behavior potentially
 ;; reduces the number of identical provideAttributeValueUpdate commands a

Migration Document

HLA RTI 1.3-Next Generation

12-19

 ;; federate must process in a given time period. Furthermore, the reduced
 ;; network traffic due fewer resulting updateAttributeValue commands
 ;; can also greatly improve performance.
 ;; RANGE: A non-negative floating point value.
 ;; DEFAULT VALUE: 0.0
 ;;
 ;;;; (ProvideAttributeValueUpdateDelayTimeInSeconds 0.0)

) ;; End of FederationSection.Advisories

 (TimeManagement
 ;; This section contains parameters related to the RTI Time Management
 ;; services.

 ;; PARAMETER: FederationSection.TimeManagement.TimeToWaitForLbtsCalculationsBeforeErrorInSeconds
 ;; DESCRIPTION: This parameter is used to control how long the LBTS (Lower
 ;; Bound on Time Stamp) calculation will stall before reporting an error.
 ;; The event synchronization algorithm requires coordination with all of the
 ;; federates when any federate becomes time regulating. If in the process of
 ;; calculating the LBTS a federate becomes unresponsive the calculation will
 ;; stall and report an error after waiting the amount of time defined by this
 ;; parameter.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT VALUE: 10.0
 ;;
 ;;;; (TimeToWaitForLbtsCalculationsBeforeErrorInSeconds 10.0)

 ;; PARAMETER: FederationSection.TimeManagement.
 ;; TimeToWaitInBetweenLbtsCalculationsInSeconds
 ;; DESCRIPTION: This parameter controls how long the synchronization process
 ;; will wait after completing an LBTS computation before initiating another
 ;; calculation. A small value will allow the federation to advance logical
 ;; time more quickly, but will also increase the rate of computations and
 ;; communications. The value should be based on the maximum rate (advances
 ;; per seconds of wallclock time) at which the federation would ever be
 ;; required to advance time.
 ;; RANGE: A floating point value greater than or equal to zero.
 ;; DEFAULT VALUE: 0.010
 ;;
 ;;;; (TimeToWaitInBetweenLbtsCalculationsInSeconds 0.010)

Migration Document

HLA RTI 1.3-Next Generation

12-20

) ;; End of FederationSection.TimeManagement

 (DataDistribution
 ;; This section contains parameters related to the RTI Data Distribution
 ;; Management services.

 ;; PARAMETER: FederationSection.DataDistribution.StrategyToUse
 ;; DESCRIPTION: The routing of federation data using the RTI Data
 ;; Distribution Management (DDM) services can be implemented using different
 ;; techniques. Each technique will have different characteristics that may
 ;; effect the performance of DDM depending on the particular operating
 ;; conditions of the federation. The initial data routing strategies offered
 ;; are:
 ;; Simple - Uses two data channels, one for Best Effort and one for
 ;; Reliable transport. This scheme provides no segmentation of data based on
 ;; DDM usage and is useful for testing purposes.
 ;; StaticSpacePartitioned - Uses two channels per routing space, one for Best
 ;; Effort and one for Reliable transport. This scheme segments data
 ;; according to the routing space that a particular class or attribute is
 ;; assigned to in the RID file. This mechanism provides a simplification to
 ;; the grid partitioned scheme in which segmentation is only required based on
 ;; the routing space, not the particular update and subscription regions
 ;; within a space.
 ;; StaticGridPartitioned - Uses two channels (Best Effort and Reliable) for
 ;; each hypercube formed by partitioning each dimension of a routing space in a
 ;; grid like fashion. The number of partitions in each dimension is user
 ;; defined. This scheme offers the federation control of how to statically
 ;; segment federation traffic for their particular exercise.
 ;; RANGE: An enumeration value {Simple, StaticSpacePartitioned,
 ;; StaticGridPartioned}.
 ;; DEFAULT VALUE: StaticGridPartitioned
 ;;
 ;;;; (StrategyToUse StaticGridPartitioned)

 (Options
 ;; This section contains parameters associated with the DDM implementations.

 ;; PARAMETER: FederationSection.DataDistribution.BestEffortChannelType
 ;; DESCRIPTION: This parameter allows for the specification of the
 ;; particular channel type for all Best Effort traffic. Currently a UDP
 ;; multicast and TCP channel type are supported. Additional channel types

Migration Document

HLA RTI 1.3-Next Generation

12-21

 ;; may be available in future releases.
 ;; RANGE: An enumeration value {UDPmulticast, TCP}.
 ;; DEFAULT_VALUE: UDPmulticast
 ;;
 ;;;; (BestEffortChannelType UDPmulticast)

 ;; PARAMETER: FederationSection.DataDistribution.ReliableChannelType
 ;; DESCRIPTION: This parameter allows for the specification of the
 ;; particular channel type for all Reliable traffic. Currently a UDP
 ;; multicast and TCP channel type are supported. Additional channel types
 ;; may be available in future releases.
 ;; RANGE: An enumeration value {UDPmulticast, TCP}.
 ;; DEFAULT_VALUE: TCP
 ;;
 ;;;; (ReliableChannelType TCP)

 (StaticGridPartitionedStrategyOptions
 ;; This section contains parameters related to the static grid strategy.

 ;; PARAMETER:
FederationSection.DataDistribution.StaticGridPartitionedStrategyOptions.MaxNumberOfDataChannelsToUse
 ;; DESCRIPTION: This parameter is used to define the maximum number of data
 ;; channels to be used by the segmentation of all routing spaces. A
 ;; larger number of channels may provide more effective segmentation of the
 ;; federation data, but for Best Effort traffic using UDP the segmentation
 ;; can be limited by the number of available multicast addresses (see
 ;; MulticastOptions in the FederationSection). If the maximum number of
 ;; channels exceed the available multicast addresses the algorithm will
 ;; reuse the addresses and therefore reducing segmentation efficiency.
 ;; The TCP mechanism for Reliable traffic has a 2^32 limit on the number of
 ;; channels due to the fact that a 32 bit quantity is used to address the
 ;; data.
 ;; RANGE: An integer value greater than zero.
 ;; DEFAULT_VALUE: 64
 ;;
 ;;;; (MaxNumberOfDataChannelsToUse 64)

 ;; PARAMETER:
FederationSection.DataDistribution.StaticGridPartitionedStrategyOptions.NumPartitionsPerDimension
 ;; DESCRIPTION: This parameter is used to define the default number of
 ;; partitions that are used for each dimension to segment the space. A
 ;; larger number of partitions will increase segmentation (provided there

Migration Document

HLA RTI 1.3-Next Generation

12-22

 ;; is not a limit with the number of channels to use or a limit in the
 ;; number of multicast addresses for UDP). Further refinement to the space
 ;; partitioning can be accomplished by having different decimation for
 ;; different dimensions in different spaces using the parameters in the
 ;; SpaceOptions section.
 ;; RANGE: An integer value greater than zero.
 ;; DEFAULT_VALUE: 1
 ;;
 ;;;; (NumPartitionsPerDimension 1)

 (SpaceOptions
 ;; The SpaceOptions Section enables the number of partitions on any given
 ;; dimension within any space to override the default. Note that to
 ;; control these parameters they need to be defined based on the
 ;; particular routing space names used in the FED (Federation Execution
 ;; Data) file. The examples below are shown for two spaces "SpaceA" and
 ;; "SpaceB", but these names would have to be replaced for use within a
 ;; particular federation. The NumPartitions parameter is associated with a
 ;; particular numbered dimension (e.g., dimension1, dimension2) and
 ;; defines the decimation for that dimension in the appropriate routing
 ;; space.

 (SpaceA
 (DimensionOptions
 ;;;; (dimension1 (NumPartions 2))
 ;;;; (dimension2 (NumPartions 3))
)
)
 (SpaceB
 (DimensionOptions
 ;;;; (dimension1 (NumPartions 5))
)
)
) ;; End of ...StaticGridPartitionedStrategyOptions.SpaceOptions
) ;; End of ...DataDistribution.StaticGridPartitionedStrategyOptions
) ;; End of ...DataDistribution.Options
) ;; End of FederationSection.DataDistribution

 (MOM
 ;; This section contains parameters related to MOM.

Migration Document

HLA RTI 1.3-Next Generation

12-23

 ;; PARAMETER: FederationSection.MOM.MomServiceAvailable
 ;; DESCRIPTION: Although MOM services are very useful for federation
 ;; monitoring and control there is an overhead associated with MOM. This
 ;; parameter allows a federation to turn off MOM services if they are not
 ;; being used within the federation.
 ;; RANGE: An enumeration value {Yes, No}.
 ;; DEFAULT_VALUE: Yes
 ;;
 ;;;; (MomServiceAvailable Yes)

 ;; PARAMETER: FederationSection.MOM.MomTickingIntervalInSeconds
 ;; DESCRIPTION: This parameter is to control how often MOM will obtain
 ;; processing cycles to perform work. It should be set at the maximum amount
 ;; of time the federation can tolerate for waiting for MOM responses.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT_VALUE: 3.0
 ;;
 ;;;; (MomTickingIntervalInSeconds 3.0)

 ;; PARAMETER: FederationSection.MOM.ExceptionLoggingFilePrefix
 ;; DESCRIPTION: This parameter specifies the file prefix for the exception
 ;; log. The file is written into the federate's current directory and has
 ;; the form: <Prefix>_<fedName> where <fedName> is the federate identifier as
 ;; specified in the call to joinFederationExecution
 ;; RANGE: A valid file name.
 ;; DEFAULT_VALUE: RtiMomExceptionLoggingFile
 ;;
 ;;;; (ExceptionLoggingFilePrefix RtiMomExceptionLoggingFile)

 ;; PARAMETER: FederationSection.MOM.EnableServiceReporting
 ;; DESCRIPTION: This controls whether the federate has service reporting
 ;; enabled upon startup.
 ;; RANGE: An enumeration value {Yes, No}.
 ;; DEFAULT_VALUE: No
 ;;
 ;;;; (EnableServiceReporting No)
) ;; End of FederationSection.MOM

(FederateSection
 ;; Entries in this section apply to federate level components. They can
 ;; also be used to override upper section parameters.

Migration Document

HLA RTI 1.3-Next Generation

12-24

 (EventRetractionHandleCacheOptions
 ;; Each federate keeps a cache of Event Retraction Handles that it has
 ;; generated. To prevent this cache from growing without bound, Event
 ;; Retraction Handles with a timestamp in the past are periodically purged.

 ;; PARAMETER: FederateSection.EventRetractionHandleCacheOptions.MinimumCacheSizeBeforePerformingPurge
 ;; DESCRIPTION: If the event retraction cache has fewer then
 ;; MinimumCacheSizeBeforePerformingPurge entries, purging will be skipped.
 ;; RANGE: An unsigned long
 ;; DEFAULT_VALUE: 65535
 ;;
 ;;;; (MinimumCacheSizeBeforePerformingPurge 65535)

 ;; PARAMETER:
FederateSection.EventRetractionHandleCacheOptions.NumberOfEventRetractionHandlesToCreateBeforeStartingNewP
urgeCycle
 ;; DESCRIPTION: Purging of the Event Retraction Handle cache may occur if at
 ;; least NumberOfEventRetractionHandlesToCreateBeforeStartingNewPurgeCycle
 ;; Event Retraction Handles have been added to the cache since the last time
 ;; the cache was purged.
 ;; RANGE: An unsigned long
 ;; DEFAULT_VALUE: 1024
 ;;
 ;;;;(NumberOfEventRetractionHandlesToCreateBeforeStartingNewPurgeCycle 1024)
) ;; End of ...FederateSection.EventRetractionHandleCacheOptions
) ;; End of FederationSection.FederateSection
) ;; End of FederationSection
) ;; End of RTI

12.412.412.412.4 Notes on porting FoodFight from RTI1.3v6 to RTI1.3-NG

12.4.1. Migrating FoodFight for the Hands-On Practicum to RTI 1.3-NG

1. Prior to porting your code, it would be wise to review the RTI.hh file. Because of our desire to
allow the use the Standard C++ fstream header file or to use of the legacy fstream.h header file.
An immediate issue arose with whether ostream is in the global namespace or in namespace std.
Our solution was to add a RTI_USES_STD_FSTEAM flag which triggers the following code
snippet.

 #ifdef RTI_USES_STD_FSTREAM
include <fstream>
define RTI_STD std
#else

Migration Document

HLA RTI 1.3-Next Generation

12-25

include <fstream.h>
define RTI_STD /* nothing */
#endif

2. During the compilation of FoodFight.cpp we experienced no other difficulties.

3. Review the .rid file parameters above:

- RTI 1.3-NG requires that you identify the location of the fedex.exe file in the
RTI_FederationExecutive.PathOfTheFullExecutable section of the .rid file.

- RTI 1.3-NG allows you to specify the host name for the launch of the RtiExec and FedExec in
the RTI_FederationExecutive.FederationStrategy section of the .rid file. If not specified, the
RTI will use the local host.

4. In addition, RTI1.3-NG does not require that the .fed and .rid files be maintained in the
%RTI_CONFIG% directory. Instead, these files should be located in the federate code directory
or the path provided during the create federation invocation (see createFederationExecution in the
programmer’s reference pages).

12.4.2. Differences we noted while running the new FoodFight execution

1. When the federate was launched without an operational RtiExec it did not spin until a RtiExec was
started. Instead, the federate hung until the resolution timeout completed it’s cycle and dispatched
an exception message to the screen. The user was prompted with sufficient information to
determine that the RtiExec was not operating at initiation.

2. The RtiExec and FedExec provide minimum manual operations. The [shift][?] feature for help is
not available.

3. Exception messages are longer and more descriptive.

4. There was no delaying action required after the createFederationExecution invocation. The
FedExec was ready to accept joining federates immediately after return.

5. Rti 1.3-NG does not depend on the %RTI_SAVE_PATH% variable. Instead, the directory
expected to contain the saved state is given by the path to the directory specified by the user in the
RID file parameter FullPathOfSaveDirectory under the RTI_FederationExecutive. As shipped the
RTI.rid file defines FullPathOfSaveDirectory as “.”. Unless this parameter was updated by the
user, the RTI saved the state files in the same directory that launched the “rtiexec”.

6. For each federate and the fedex, a successful save produced a file with the name generated using
the name of the federation, the save label, the federate type and the federate handle. In the case of
the fedex application, “fedex” was used instead of the federate type and handle. For example, the
following would have been created for the federation named, “Verification”, using a save label of
“Save2Feds”, with two federates and the fedex.

Verification_Save2Feds_agent1_1.save
Verification_Save2Feds_agent2_3.save
Verification_Save2Feds_fedex.save

Migration Document

HLA RTI 1.3-Next Generation

12-26

12.4.3. Getting help

A web based help desk system on the RTI1.3NG Support Page
(http://helpdesk.dctd.saic.com/) has been established to allow users to submit problem
reports, provide enhancement requests, or get help. To submit a problem report,
enhancement request, or pose a question follow the Submit Problem link. You will then be
prompted to enter a user name and password to access the HelpDesk software. Enter the user
name and password that you were assigned when you downloaded the software. Upon
successful login, you will be presented with a problem report form. Please choose the
appropriate Case Type (Problem Report or Enhancement Request) and problem category
from the Case Category - Type – Item selection boxes and enter a short description and the
details of the problem. Shortly after you submit your problem report, you should receive
email confirming its submission and containing the case ID for the report and a link to the
problem report. You may use link in the email to go directly to the problem report view or
you can view your problem report status using the View Problems link. When the problem
has been solved or an answer posed for your question you will receive an email with a link to
the solution of your problem.

http://helpdesk.alex.saic.com/

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -1

INDEX

Term Page #

~RTIambassador() A.7-1

A

announceSynchronizationPoint() B.1-1

associateRegionForUpdates() A.6-1

AttributeHandleSet C.1-1

AttributeHandleValuePairSet C.1-3

attributeIsNotOwned() B.4-1

attributeIsOwnedByFederate() A.4-1

attributeOwnedByRTI() B.4-2

attributeOwnershipAcquisition() A.4-2

attributeOwnershipAcquisitionIfAvailable() A.4-4

attributeOwnershipAcquisitionNotification() B.4-3

attributeOwnershipDivestitureNotification() B.4-5

attributeOwnershipReleaseResponse() A.4-5

attributeOwnershipUnavailable() B.4-7

attributesInScope() B.3-1

attributesOutOfScope() B.3-2

C

cancelAttributeOwnershipAcquisition() A.4-6

cancelNegotiatedAttributeOwnershipDivestiture() A.4-8

changeAttributeOrderType() A.5-1

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -2

changeAttributeTransportType() A.3-1

changeInteractionOrderType() A.5-3

changeInteractionTransportType() A.3-3

confirmAttributeOwnershipAcquisitionCancellation(
)

B.4-8

createFederationExecution() A.1-1

createRegion() A.6-2

D

deleteObject() A.3-4

deleteObjectInstance() A.3-5

deleteRegion() A.6-3

dequeueFIFOasynchronously() A.7-2

destroyFederationExecution() A.1-3

disableAsynchronousDelivery() A.5-5

disableAttributeRelevanceAdvisorySwitch() A.7-3

disableAttributeScopeAdvisorySwitch() A.7-4

disableClassRelevanceAdvisorySwitch() A.7-5

disableInteractionRelevanceAdvisorySwitch() A.7-6

disableTimeConstrained() A.5-6

disableTimeRegulation() A.5-7

discoverObject() B.3-3

discoverObjectInstance() B.3-4

E

enableAsynchronousDelivery() A.5-8

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -3

enableAttributeRelevanceAdvisorySwitch() A.7-7

enableAttributeScopeAdvisorySwitch() A.7-8

enableClassRelevanceAdvisorySwitch() A.7-9

enableInteractionRelevanceAdvisorySwitch() A.7-10

enableTimeConstrained() A.5-9

enableTimeRegulation() A.5-11

Enumerated Types C.2-1

EventRetractionHandle C.2-8

Exception C.1-6

Exceptions C.2-2

F

Factory Classes C.2-6

FederateHandleSet C.1-7

federateRestoreComplete() A.1-4

federateRestoreNotComplete() A.1-5

federateSaveAchieved() A.1-8

federateSaveBegun() A.1-6

federateSaveComplete() A.1-9

federateSaveNotAchieved() A.1-10

federateSaveNotComplete() A.1-11

federationNotRestored() B.1-2

federationNotSaved() B.1-3

federationRestoreBegun() B.1-4

federationRestored() B.1-5

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -4

federationSaved() B.1-6

federationSynchronized() B.1-7

FedTime C.1-8

flushQueueRequest() A.5-13

G

getAttributeHandle() A.7-11

getAttributeName() A.7-12

getAttributeRoutingSpaceHandle() A.7-13

getDimensionHandle() A.7-14

getDimensionName() A.7-15

getInteractionClassHandle() A.7-16

getInteractionClassName() A.7-17

getInteractionRoutingSpaceHandle() A.7-18

getObjectClass() A.7-19

getObjectClassHandle() A.7-20

getObjectClassName() A.7-21

getObjectInstanceHandle() A.7-22

getObjectInstanceName() A.7-23

getOrderingHandle() A.7-24

getOrderingName() A.7-25

getParameterHandle() A.7-26

getParameterName() A.7-27

getRegion() A.7-28

getRegionToken() A.7-29

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -5

getRoutingSpaceHandle() A.7-30

getRoutingSpaceName() A.7-31

getTransportationHandle() A.7-32

getTransportationName() A.7-33

I

informAttributeOwnership() B.4-9

initiateFederateRestore() B.1-8

initiateFederateSave() B.1-9

initiatePause() B.1-11

initiateRestore() B.1-12

initiateResume() B.1-13

isAttributeOwnedByFederate() A.4-9

J

joinFederationExecution() A.1-12

L

localDeleteObjectInstance() A.3-7

M

modifyLookahead() A.5-15

N

negotiatedAttributeOwnershipDivestiture() A.4-10

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -6

nextEventRequest() A.5-16

nextEventRequestAvailable() A.5-18

notifyAboutRegionModification() A.6-4

P

ParameterHandleValuePairSet C.1-10

pauseAchieved() A.1-14

Pound-Defined Constants C.2-7

provideAttributeValueUpdate() B.3-5

publishInteractionClass() A.2-1

publishObjectClass() A.2-2

Q

queryAttributeOwnership() A.4-12

queryFederateTime() A.5-20

queryLBTS() A.5-21

queryLookahead() A.5-22

queryMinNextEventTime() A.5-23

R

receiveInteraction() B.3-6

reflectAttributeValues() B.3-8

reflectRetraction() B.3-10

Region C.1-13

registerFederationSynchronizationPoint() A.1-15

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -7

registerObject() A.3-8

registerObjectInstance() A.3-9

registerObjectInstanceWithRegion() A.6-5

removeObject() B.3-11

removeObjectInstance() B.3-12

requestAttributeOwnershipAcquisition() A.4-14

requestAttributeOwnershipAssumption() B.4-10

requestAttributeOwnershipDivestiture() A.4-16

requestAttributeOwnershipRelease() B.4-12

requestClassAttributeValueUpdate() A.3-11

requestClassAttributeValueUpdateWithRegion() A.6-7

requestFederateTime() A.5-24

requestFederationRestore() A.1-17

requestFederationRestoreFailed() B.1-14

requestFederationRestoreSucceeded() B.1-15

requestFederationSave() A.1-19

requestFederationTime() A.5-25

requestID() A.3-12

requestLBTS() A.5-26

requestLookahead() A.5-27

requestMinNextEventTime() A.5-28

requestObjectAttributeValueUpdate() A.3-13

requestPause() A.1-21

requestRestore() A.1-22

requestResume() A.1-23

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -8

requestRetraction() B.5-1

resignFederationExecution() A.1-24

restoreAchieved() A.1-25

restoreNotAchieved() A.1-26

resumeAchieved() A.1-27

retract() A.5-29

RTIambassador() A.7-34

S

sendInteraction() A.3-14

sendInteractionWithRegion() A.6-9

setLookahead() A.5-30

setTimeConstrained() A.5-31

startInteractionGeneration() B.2-1

startRegistrationForObjectClass() B.2-2

startUpdates() B.2-3

stopInteractionGeneration() B.2-4

stopRegistrationForObjectClass() B.2-5

stopUpdates() B.2-6

subscribeInteractionClass() A.2-4

subscribeInteractionClassWithRegion() A.6-11

subscribeObjectClassAttribute() A.2-6

subscribeObjectClassAttributes() A.2-8

subscribeObjectClassAttributesWithRegion() A.6-13

synchronizationPointAchieved() A.1-28

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -9

synchronizationPointRegistrationFailed() B.1-16

synchronizationPointRegistrationSucceeded() B.1-17

T

tick() A.7-35

timeAdvanceGrant() B.5-2

timeAdvanceRequest() A.5-32

timeAdvanceRequestAvailable() A.5-34

timeConstrainedEnabled() B.5-3

timeRegulationEnabled() B.5-4

turnInteractionsOff() B.2-7

turnInteractionsOn() B.2-8

turnRegulationOff() A.5-36

turnRegulationOn() A.5-37

turnRegulationOnNow() A.5-38

turnUpdatesOffForObjectInstance() B.3-13

turnUpdatesOnForObjectInstance() B.3-14

Typedefs C.2-9

U

unassociateRegionForUpdates() A.6-15

unconditionalAttributeOwnershipDivestiture() A.4-18

unpublishInteractionClass() A.2-10

unpublishObjectClass() A.2-11

unsubscribeInteractionClass() A.2-13

Index to Appendix Terms

HLA RTI 1.3-Next Generation

Index -10

unsubscribeInteractionClassWithRegion() A.6-16

unsubscribeObjectClass() A.2-14

unsubscribeObjectClassAttribute() A.2-15

unsubscribeObjectClassWithRegion() A.6-17

updateAttributeValues() A.3-16

	Preface
	Introduction to HLA
	
	
	Figure 1-1. DoD M&S Master Plan
	Figure 1-2. Common Technical Framework
	Figure 1-3. High Level Architecture Mandate
	Figure 1-4. HLA Component Summary

	Federation Rules
	Interface Specification
	Object Model Template (OMT)
	
	Figure 1-5. Object Model Template
	Figure 1-6. Object Model Summary

	Conceptual Model of the Mission Space (CMMS)
	
	Figure 1-7. Conceptual Model of the Mission Space
	Figure 1-8. The CMMS Process

	Data Standardization (DS)
	
	Figure 1-9. Data Standardization Products

	Further Reading

	RTI Synopsis
	
	
	Figure 2-1. RTI Overview

	Major Components
	
	Figure 2-2. RTI Components At-a-Glance
	Figure 2-3. RTI Components

	RtiExec
	FedExec
	libRTI
	
	Figure 2-4. RTI and Federate Code Responsibilities

	Management Areas
	
	Figure 2-5. Federate – Federation Interplay
	Figure 2-6. FedExec Life Cycle
	Figure 2-7. Management Areas Partitioned

	Federation Management
	Figure 2-8. Federation Management

	Declaration Management
	Figure 2-9. Declaration Management

	Object Management
	Figure 2-10. Object Management

	Ownership Management
	Figure 2-11. Ownership Management

	Time Management
	Figure 2-12. Time Management

	Data Distribution Management
	Figure 2-13. Data Distribution Management

	The Role of Time
	Introduction
	Time Management Basics
	"Regulating" and "Constrained"
	Regulating
	Lookahead
	TSO Event
	Constrained
	Lower bound time stamp (LBTS)

	Advancing Time
	
	Figure 3-2. Six-axis Diagram – Late Arrival

	LBTS Constraint
	Figure 3-3. LBTS for Constrained Federates

	Late Arriving Federate
	Figure 3-4. Late-Arriving Federate

	"Receive-Ordered" v. "TSO" Events
	
	Figure 3-5. Per Federate Queues

	EXAMPLE 1
	EXAMPLE 2
	SUMMARY

	FOM/SOM Development
	
	
	Figure 4-1. The Federation Development and Execution Process (FEDEP) Model

	Federation Management
	Introduction
	Primary Functions
	
	Figure 5-1. Federation Management Life Cycle

	RTIambassador::createFederationExecution()
	RTIambassador::joinFederationExecution()
	RTIambassador::tick()
	RTIambassador::resignFederationExecution()
	RTIambassador::destroyFederationExecution()

	FoodFight Example
	Federate Synchronization
	Save/Restore
	
	Figure 5-3. Federation Management Save
	Figure 5-4. Federation Management Restore

	Time Management
	Introduction
	Toggling "regulating" and "constrained" Status
	
	Figure 6-1. Toggling "regulating" and "constrained" Status

	Regulation Policy
	Constrained Policy

	Time Advance Requests
	Time-Stepped Federates
	Figure 6-2. Logical Time Advancement for a Time-Step Federate

	Event-Based Federates
	Figure 6-3. Logical Time Advancement for an Event-Based Federate

	Optimistic Federates
	Figure 6-4. Logical Time Advancement for an Optimistic Federate

	FoodFight Example
	Time-Related Queries
	Polling vs. AsynchronousIO Tick() Strategies

	Declaration Management
	Introduction
	
	Figure 7-1. Control Signal Schema

	Object Vocabulary Review
	Object Hierarchies
	
	Figure 7-2. Class Hierarchy – Venn Diagram

	Publishing and Subscribing Objects
	
	Figure 7-3. Object Publishing

	Object Publication
	Interaction Publication
	Object Subscription
	Interaction Subscription
	Control Signals

	Object Publication and Subscription
	
	Figure 7-4. Object Publication and Subscription

	Throttling Publications
	FoodFight Object Declaration
	Excerpt from Student.h
	Dynamic Object Publication and Subscription

	Publishing and Subscribing Interactions
	
	Figure 7-5. Declaring Interactions

	Object Management
	Registering, Discovering, and Deleting Object Instances
	
	Figure 8-1. Object Management Methodology

	Updating and Reflecting Object Attributes
	
	Figure 8-2. Object Management Updates

	Encoding and Object Update
	Decoding and Object Reflection
	Exchanging Interactions
	
	Figure 8-3. Exchanging Interactions

	Additional Object Control
	
	Figure 8-4. Additional Object Control

	Attribute Management
	Enable/Disable Attribute Management
	Figure 8-5. Scope Interactions

	Ownership Management
	Introduction
	Push v. Pull
	Privilege to Delete

	Ownership Pull
	
	Figure 9-1. Shared Update Responsibility
	Figure 9-2. Ownership Pull Interaction Diagram – Orphaned Attribute
	Figure 9-3. Ownership Pull Interaction Diagram – Intrusive

	Attribute Ownership Acquisition
	Attribute Ownership Release

	Ownership Push
	
	Figure 9-4. Ownership Push Interaction Diagram

	Unconditional Push
	Negotiated Push
	Complex Exchanges

	Supporting Functions
	Cancellation
	Queries

	Data Distribution Management
	Introduction
	Example Routing Space
	A Previous Example Revisited
	Figure 10-1. Publication and Subscription Intersections

	A Routing Space
	Figure 10-2. Example Routing Space

	Defining Routing Spaces and Regions
	Routing Spaces
	Extents
	Figure 10-3. Normalization of a Range in an Extent

	Calculation of Extents
	Creative Dimensions
	Regions and Attributes
	Oddly Shaped Regions
	Figure 10-5. Two-Layer Filtering

	Thresholds
	Default Routing Space

	Creating Regions
	
	Figure 10-6. Region Methods

	Binding Object Attributes to Regions
	Attribute Updates and Regions
	Attribute Subscriptions and Regions
	Requesting Updates
	Figure 10-7. DDM Attributes (Part 1 of 3)
	Figure 10-8. DDM Attributes (Part 2 of 3)
	Figure 10-9. DDM Attributes (Part 3 of 3)

	Object Ownership and Regions
	Time and Regions

	Binding Interactions to Regions
	
	Figure 10-10. Interactions and DDM

	M
	Management Object Model
	Introduction to the Management Object Model
	Interactions

	Manager
	Manager.Federate
	Manager.Federate.Adjust
	Manager.Federate.Adjust.ModifyAttributeState
	Manager.Federate.Adjust.SetServiceReporting
	Manager.Federate.Adjust.SetExceptionLogging
	Manager.Federate.Adjust.SetTiming
	Manager.Federate.Report
	Manager.Federate.Report.Alert
	Manager.Federate.Report.ReportInteractionPublication
	Manager.Federate.Report.ReportInteractionsReceived
	Manager.Federate.Report.ReportInteractionsSent
	Manager.Federate.Report.ReportInteractionSubscription
	Manager.Federate.Report.ReportObjectInformation
	Manager.Federate.Report.ReportObjectPublication
	Manager.Federate.Report.ReportObjectsOwned
	Manager.Federate.Report.ReportObjectsReflected
	Manager.Federate.Report.ReportObjectSubscription
	Manager.Federate.Report.ReportObjectsUpdated
	Manager.Federate.Report.ReportReflectionsReceived
	Manager.Federate.Report.ReportServiceInvocation
	Manager.Federate.Report.ReportUpdatesSent
	Manager.Federate.Request
	Manager.Federate.Request.RequestInteractionsReceived
	Manager.Federate.Request.RequestInteractionsSent
	Manager.Federate.Request.RequestObjectInformation
	Manager.Federate.Request.RequestObjectsOwned
	Manager.Federate.Request.RequestObjectsReflected
	Manager.Federate.Request.RequestObjectsUpdated
	Manager.Federate.Request.RequestPublications
	Manager.Federate.Request.RequestReflectionsReceived
	Manager.Federate.Request.RequestSubscriptions
	Manager.Federate.Request.RequestUpdatesSent
	Manager.Federate.Service
	Manager.Federate.Service.ChangeAttributeOrderType
	Manager.Federate.Service.ChangeAttributeTransportationType
	Manager.Federate.Service.ChangeInteractionOrderType
	Manager.Federate.Service.ChangeInteractionTransportionType
	Manager.Federate.Service.DeleteObjectInstance
	Manager.Federate.Service.DisableAsynchronousDelivery
	Manager.Federate.Service.DisableTimeConstrained
	Manager.Federate.Service.DisableTimeRegulation
	Manager.Federate.Service.EnableAsynchronousDelivery
	Manager.Federate.Service.EnableTimeConstrained
	Manager.Federate.Service.EnableTimeRegulation
	Manager.Federate.Service.FederateRestoreComplete
	Manager.Federate.Service.FederateSaveBegun
	Manager.Federate.Service.FederateSaveComplete
	Manager.Federate.Service.FlushQueueRequest
	Manager.Federate.Service.LocalDeleteObjectInstance
	Manager.Federate.Service.ModifyLookahead
	Manager.Federate.Service.NextEventRequest
	Manager.Federate.Service.NextEventRequestAvailable
	Manager.Federate.Service.PublishInteractionClass
	Manager.Federate.Service.PublishObjectClass
	Manager.Federate.Service.ResignFederationExecution
	Manager.Federate.Service.SubscribeInteractionClass
	Manager.Federate.Service.SubscribeObjectClassAttributes
	Manager.Federate.Service.SynchronizationPointAchieved
	Manager.Federate.Service.TimeAdvanceRequest
	Manager.Federate.Service.TimeAdvanceRequestAvailable
	Manager.Federate.Service.UnconditionalAttributeOwnershipDivestiture
	Manager.Federate.Service.UnpublishInteractionClass
	Manager.Federate.Service.UnpublishObjectClass
	Manager.Federate.Service.UnsubscribeInteractionClass
	Manager.Federate.Service.UnsubscribeObjectClass
	Objects

	Manager
	Manager.Federate
	Manager.Federation
	M
	Migration Document
	Introduction to Migrating RTI 1.3v6 Federates to RTI 1.3-NG
	Management Object Model
	General notes
	Manager.Federate.Adjust.ModifyAttributeState
	Manager.Federate.Adjust.SetExceptionLogging
	Manager.Federate.Report.Alert
	Manager.Federate.Report.ReportObjectSubscription
	Manager.Federate.Report.ReportServiceInvocation
	Manager.Federate object

	RTI Initialization Data (Extracted from the RTI.rid file)
	Introduction to the RTI 1.3-NG RTI Initialization Date file
	File Location
	File Format
	File Parameter Scoping
	Parameter Definition

	Notes on porting FoodFight from RTI1.3v6 to RTI1.3-NG
	Migrating FoodFight for the Hands-On Practicum to RTI 1.3-NG
	Differences we noted while running the new FoodFight execution
	Getting help

